net-compress_ECCV(18')

Pruning

AMC: Automated Model Compression and Acceleration with Reinforcement Learning
Yihui He, Xi'an Jiaotong University; Ji Lin, Tsinghua University; Song Han*, MIT

Extreme Network Compression via Filter Group Approximation
Bo Peng*, Hikvision Research Institute; Wenming Tan, Hikvision Research Institute; Zheyang Li, Hikvision Research Institute; Shun Zhang, Hikvision Research Institute; Di Xie, Hikvision Research Institute; Shiliang Pu, Hikvision Research Institute

Clustering Kernels for Compressing the Convolutional Neural Networks
Sanghyun Son, Seoul National University; Seungjun Nah, Seoul National University; Kyoung Mu Lee*, Seoul National University

Constraints Matter in Deep Neural Network Compression
Changan Chen, Simon Fraser University; Fred Tung*, Simon Fraser University; Naveen Vedula, Simon Fraser University; Greg Mori, Simon Fraser University

Coreset-Based Convolutional Neural Network Compression
Abhimanyu Dubey*, Massachusetts Institute of Technology; Moitreya Chatterjee, University of Illinois at Urbana Champaign; Ramesh Raskar, Massachusetts Institute of Technology; Narendra Ahuja, University of Illinois at Urbana-Champaign, USA

A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers
Tianyun Zhang*, Syracuse University; Shaokai Ye, Syracuse University; Kaiqi Zhang, Syracuse University; Yanzhi Wang, Syracuse University; Makan Fardad, Syracuse Universtiy; Wujie Wen, Florida International University

(6)


Low-rank

Constrained Optimization Based Low-Rank Approximation of Deep Neural Networks
Chong Li*, University of Washington; C.J. Richard Shi, University of Washington

(1)


KD

Self-supervised Knowledge Distillation Using Singular Value Decomposition

(1)


low-Bit

Training Binary Weight Networks via Semi-Binary Decomposition
Qinghao Hu*, Institute of Automation, Chinese Academy of Sciences; Gang Li, Institute of Automation, Chinese Academy of Sciences; Peisong Wang, Institute of Automation, Chinese Academy of Sciences; yifan zhang, Institute of Automation,Chinese Academy of Sciences; Jian Cheng, Chinese Academy of Sciences, China

Bi-Real Net: Enhancing the Performance of 1-bit CNNs with Improved Representational Capability and Advanced Training Algorithm
zechun liu*, HKUST; Baoyuan Wu, Tencent AI Lab; Wenhan Luo, Tencent AI Lab; Xin Yang, Huazhong University of Science and Technology; Wei Liu, Tencent AI Lab; Kwang-Ting Cheng, Hong Kong University of Science and Technology

Optimized Quantization for Highly Accurate and Compact DNNs
Dongqing Zhang, Microsoft Research; Jiaolong Yang*, Microsoft Research Asia (MSRA); Dongqiangzi Ye, Microsoft Research; Gang Hua, Microsoft Cloud and AI

Quantized Densely Connected U-Nets for Efficient Landmark Localization
Zhiqiang Tang*, Rutgers; Xi Peng, Rutgers University; Shijie Geng, Rutgers; Shaoting Zhang, University of North Carolina at Charlotte; Lingfei Wu, IBM T. J. Watson Research Center; Dimitris Metaxas, Rutgers

Value-aware Quantization for Training and Inference of Neural Networks
Eunhyeok Park, Seoul National University; Sungjoo Yoo*, Seoul National University; Peter Vajda, Facebook

Quantization Mimic: Towards Very Tiny CNN for Object Detection
Yi Wei*, Tsinghua University; Xinyu Pan, MMLAB, CUHK; Hongwei Qin, SenseTime; Junjie Yan, Sensetime; Wanli Ouyang, CUHK

(6)


Compact Network

Light-weight CNN Architecture Design for Fast Inference
Ningning Ma*, Tsinghua; Xiangyu Zhang, Megvii Inc; Hai-Tao Zheng, Tsinghua University; Jian Sun, Megvii, Face++

Deep Expander Networks: Efficient Deep Networks from Graph Theory
Ameya Prabhu*, IIIT Hyderabad; Girish Varma, IIIT Hyderabad; Anoop Namboodiri, IIIT Hyderbad

(2)

近几年其他相关文章可以查询
http://www.sohu.com/a/232047203_473283
https://github.com/ZhishengWang/Embedded-Neural-Network

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容