大数据技术与应用:爱奇艺-用户画像

用户分析方法

用户角色(1)和用户画像(2)的方法区别:

  • 技术方法
    1. 小规模用户调研,问卷、访谈、统计
    2. 海量用户的建模、挖掘、分析
  • 核心目标
    1. 核心目标,共情,需求差异、行为动机
    2. 大规模用户,客观行为,用户标签体系
  • 数据形态
    1. 具体、若干定制的用户原型
    2. 抽象、可基于标签圈选任意用户群
  • 应用场景
    1. 市场分析、品牌定位、产品设计、用户体验优化
    2. 用户研究、经营分析、精准营销、个性推荐
  • 应用特点
    1. 数据量小,获取成本低、周期短、一次性、人工分析
    2. 数据量大,获得和维护成本高、周期长;灵活、广泛、规模化、系统化、自动化

用户调研是一套一次性具体场景的设计、研究和分析的方案,依赖于人工经验;用户画像是一套系统基础设施,需要很多工程、算法的搭建工作,能持久化、广泛化、多场景地发挥数据价值。

用户标签体系

  • 自然属性:年龄、性别、常驻地
  • 设备属性:品牌、运营商
  • 身份属性:账号、ID
  • 行为偏好:行为偏好、内容偏好
  • 社交属性:家庭关系、社交网络
  • 业务属性:会员、游戏、观影

可以把用户标签简单分为两类,一类是基础通用标签,在各个行业和业务场景中都是需要的,且数据建设和建模的方法基本上都是通用的,比如年龄性别预测等;另一类是基于具体的业务场景、解决具体业务问题的标签,需要PM深刻地理解业务场景和目标、标签价值。

用户画像挖掘流程

  1. 基础数据
    • 用户属性:注册填写、问卷调查
    • 用户行为:搜索、上报
    • 外部数据:爬取、第三方
  2. 特征工程
    • 特征库:历史特征、实时特片、效果统计、异常监控
    • 特征处理:异常点、归一化、离散化、组合、降维、缺失值填补
  3. 预测建模
    • 算法:LR/FM/GBDT/Word2Vec/LSTM
    • 工具:样本抽取、实验配置、效果监控、模型解释
  4. 应用出口
    • 广告投放:DMP
    • 数据分析:用户圈选、细查
    • 用户特征:CTR预估、推荐召回/排序

用户画像案例

  • 用户属性识别(性别、年龄)
  • 自然人识别
  • wifi数据挖掘家庭网络关系
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容