《R数据可视化手册》学习笔记6---描述数据分布(8)小提琴图

写在前面。

这篇文章对应原书的第6章,主要介绍一些描述数据分布的可视化图形。主要包括如下这些:

  • 直方图
  • 密度图
  • 频数多边形
  • 箱线图
  • 小提琴图
  • Wilkinson点图

小提琴图

如何绘制小提琴图以对各组数据的密度估计进行比较呢?

示例数据heightweight数据集:

> str(heightweight)
'data.frame':   236 obs. of  5 variables:
 $ sex     : Factor w/ 2 levels "f","m": 1 1 1 1 1 1 1 1 1 1 ...
 $ ageYear : num  11.9 12.9 12.8 13.4 15.9 ...
 $ ageMonth: int  143 155 153 161 191 171 185 142 160 140 ...
 $ heightIn: num  56.3 62.3 63.3 59 62.5 62.5 59 56.5 62 53.8 ...
 $ weightLb: num  85 105 108 92 112 ...

使用geom_violin函数即可。

ggplot(data = heightweight, aes(x = sex, y = heightIn)) + geom_violin()

[图片上传失败...(image-8576bb-1696889849634)]

小提琴图也是核密度估计,取核密度曲线的镜像使形状对称。弥补了密度图进行多组绘图时的彼此干扰的问题。

传统绘图会在小提琴图中间叠加一个箱线图,并显示中位数为白圈

ggplot(data = heightweight, aes(x = sex, y = heightIn)) +
  geom_violin()+
  geom_boxplot(width = 0.1, fill = "grey", outlier.colour = NA)+
  stat_summary(fun = median, geom = "point", fill = "white", shape = 1, size = 2.5)

[图片上传失败...(image-bdc84e-1696889849634)]

outlier.colour = NA选项用于清除异常点

可以看到,尾部是被截断的,可以使用选项trim=FALSE使尾部不截断。

通常情况下,默认会对数据进行标准化,使图形面积一致,可以使用scale=count设置不进行标准化,使每组小提琴图的面积和计数成正比

ggplot(data = heightweight, aes(x = sex, y = heightIn)) +
  geom_violin(scale = "count", trim = FALSE)+
  geom_boxplot(width = 0.1, fill = "grey", outlier.colour = NA)+
  stat_summary(fun = median, geom = "point", fill = "white", shape = 1, size = 2.5)

[图片上传失败...(image-19e9aa-1696889849634)]

核密度图一样,平滑程度也可以使用adjust进行调整:

ggplot(data = heightweight, aes(x = sex, y = heightIn)) +
  geom_violin(scale = "count", trim = FALSE, adjust = 0.5)+
  stat_summary(fun = median, geom = "point", fill = "white", shape = 1, size = 2.5)

[图片上传失败...(image-28f8a9-1696889849634)]

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容