高斯混合模型原理及实现(Gaussian Mixture Models)

项目地址:https://github.com/Daya-Jin/ML_for_learner/blob/master/mixture/GaussianMixture.ipynb
原博客:https://daya-jin.github.io/2019/03/15/Gaussian_Mixture_Models/

算法概述

高斯混合模型(Gaussian Mixture Models)是一种无监督聚类模型。GMM认为不同类别的特征密度函数是不一样的(实际上也不一样),GMM为每个类别下的特征分布都假设了一个服从高斯分布的概率密度函数:

\begin{aligned} P(x|c_{k})&=\frac{1}{\sqrt{2\pi}\sigma_{k}}exp(-\frac{(x-\mu_{k})^{2}}{2\sigma_{k}^2}) \\ P(x|c_{k})&{\sim}N(\mu_{k},\sigma_{k}) \\ \end{aligned}

而数据中又可能是由多个类混合而成,所以数据中特征的概率密度函数可以使用多个高斯分布的组合来表示:

\begin{aligned} P(x)&=\sum\limits_{k=1}^{K}P(c_{k})P(x|c_{k}) \\ &=\sum\limits_{k=1}^{K}\pi_{k}N(x|\mu_{k},\sigma_{k}) \\ \end{aligned}

其中\pi_{k}为类分布概率,也可看做是各高斯分布函数的权重系数,也叫做混合系数(mixture coefficient),其满足\sum_{k=1}^{K}\pi_{k}=1

Expectation-Maximization

模型的形式有了,给定一组数据X,我们需要得到一组参数\{\mu,\sigma\},使得在这组参数下观测数据X出现的概率最大,即最大似然估计。对于数据中的所有样本,其出现的概率(似然函数)为:

\prod\limits_{i=1}^{N}P(x_{i})=\prod\limits_{i=1}^{N}\sum\limits_{k=1}^{K}\pi_{k}N(x_{i}|\mu_{k},\sigma_{k})

对数似然函数为:

\sum\limits_{i=1}^{N}\ln\{\sum\limits_{k=1}^{K}\pi_{k}N(x_{i}|\mu_{k}\sigma_{k})\}

假设我们现在有了参数\{\mu,\sigma\},需要计算某个样本对应的类簇,由贝叶斯公式有:

\begin{aligned} P(c_{k}|x_{i})&=\frac{P(c_{k},x_{i})}{P(x_{i})} \\ &=\frac{P(x_{i}|c_{k})P(c_{k})}{P(x_{i})} \\ &=\frac{\pi_{k}N(x_{i}|\mu_{k},\sigma_{k})}{\sum\limits_{k=1}^{K}\pi_{k}N(x_{i}|\mu_{k},\sigma_{k})} \end{aligned}

可以看出就是一个softmax的形式。同时,有了P(c_{k}\|x_{i})之后,又可以计算出某个类别的分布概率与该类别下的统计量:

\begin{aligned} N_{k}&=\sum\limits_{i=1}^{N}P(c_{k}|x_{i}) \\ \pi_{k}&=\frac{N_{k}}{N}=\frac{1}{N}\sum\limits_{i=1}^{N}P(c_{k}|x_{i}) \\ \mu_{k}&=\frac{1}{N_{k}}\sum\limits_{i=1}^{N}P(c_{k}|x_{i})x_{i} \\ \sigma_{k}&=\sqrt{\frac{1}{N_{k}}\sum\limits_{i=1}^{N}P(c_{k}|x_{i})(x_{i}-\mu_{k})^{2}} \\ \end{aligned}

其中N_{k}为类别k出现的频率期望。

以上两步计算实质上对应了期望最大化(Expectation-Maximization)算法的E步(E-step)跟M步(M-step)。

多维数据时的情况

在多维数据下,需要为每个类生成一个多维高斯分布,表示方式与单维情况稍有不同:

N(x_{i}|\mu_{k},\Sigma_{k})=\frac{1}{(2\pi)^{n/2}\Sigma_{k}^{1/2}}exp(-\frac{1}{2}(x_{i}-\mu_{k})^{T}\Sigma_{k}^{-1}(x_{i}-\mu_{k}))

训练

有了算法框架,怎么训练模型呢。在初始时随机生成K个高斯分布,然后不断地迭代EM算法,直至似然函数变化不再明显或者达到了最大迭代次数。

E-step

在给定的多维高斯分布下,计算各样本属于各个类别的概率:

P(c_{k}|x_{i})=\frac{\pi_{k}P(c_{k}|x_{i})}{\sum\limits_{k=1}^{K}\pi_{k}P(c_{k}|x_{i})}

M_step

根据概率重新计算更优的高斯参数:

\begin{aligned} N_{k}&=\sum\limits_{x=1}^{N}P(c_{k}|x_{i}) \\ \pi_{k}&=\frac{N_{k}}{N} \\ \mu_{k}&=\frac{1}{N_{k}}\sum\limits_{i=1}^{N}P(c_{k}|x_{i})x_{i} \\ \Sigma_{k}&=\frac{1}{N_{k}}\sum\limits_{i=1}^{N}P(c_{k}|x_{i})(x_{i}-\mu_{k})^{T}(x_{i}-\mu_{k}) \\ \end{aligned}

实现指导

完整代码

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,313评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,369评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,916评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,333评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,425评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,481评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,491评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,268评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,719评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,004评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,179评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,832评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,510评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,153评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,402评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,045评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,071评论 2 352

推荐阅读更多精彩内容