大数据《Spark高级数据分析第2版》PDF代码+《Hadoop权威指南第4版》PDF代码学习

今天互联网不断发展,逐渐深入我们生活的各个层面,随之而来的是数据量的指数级增长,所以,大数据是近几年广受关注的一个概念。。很久以前,人类就学会了通过分析数据获取有价值的结论。有时,影响结论的因素过多,采样的数据无法有效保留所有因素的影响,得出的结论就不够有效。如果不使用采样,而原始数据规模巨大,我们就需要改进数据处理的手段。

作为计算框架,Spark速度快,开发简单,能同时兼顾批处理和实时数据分析,因此很快被广大企业级用户所采纳,并随着近年人工智能的崛起而成为分析和挖掘大数据的重要得力工具。Hadoop生态很全:HDFS, MapReduce1&2(YARN), Hive, HBase, Pig, ZooKeeper, Sqoop等,涉及从算法到实现到操作到应用。 

多数章节对自己的要求都是了解和能用即可,唯独ZK一章爱不释手,从算法到实现到操作到应用讲的真是好。 系统性学习不还是得看经典书籍。

hadoop学习:《Hadoop权威指南第4版》中文PDF+英文PDF+代码,《Hadoop权威指南第4版》中文PDF,734页,带书签目录;英文PDF,805页,带书签目录。配套源代码。

下载: https://pan.baidu.com/s/1bINLu_pdl3cu8W7vv63bFg   提取码: y77c

结合理论和实践,《Hadoop权威指南第四版》由浅入深,全方位介绍了Hadoop 这一高性能的海量数据处理和分析平台。5部分24 章,第Ⅰ部分介绍Hadoop 基础知识,第Ⅱ部分介绍MapReduce,第Ⅲ部分介绍Hadoop 的运维,第Ⅳ部分介绍Hadoop 相关开源项目,第Ⅴ部分提供了三个案例。

《Spark快速大数据分析》中文PDF,231页,带书签目录,文字可复制。英文PDF,274页,带书签目录,文字可复制。

下载: https://pan.baidu.com/s/1sJHswbudVO-HihYXEpuLYg   提取码: 6eha

使用Spark进行大规模数据分析的实战宝典,由著名大数据公司Cloudera的数据科学家撰写。四位作者首先结合数据科学和大数据分析的广阔背景讲解了Spark,然后介绍了用Spark和Scala进行数据处理的基础知识,接着讨论了如何将Spark用于机器学习,同时介绍了常见应用中几个最常用的算法。此外还收集了一些更加新颖的应用,比如通过文本隐含语义关系来查询Wikipedia或分析基因数据。

学习《Spark高级数据分析第2版》中文PDF+英文PDF+源代码:《Spark高级数据分析第2版》中文PDF,452页,带目录,文字可复制;英文PDF,455页,带目录,文字可复制;有源代码。

下载: https://pan.baidu.com/s/19IiWLQ19KYMpW3rP8HDx9Q  提取码: 8krw

《Spark高级数据分析第2版》由业内知名数据科学家执笔,通过丰富的示例展示了如何结合Spark、统计方法和真实世界数据集来解决数据分析问题,既涉及模型的构建和评价,也涵盖数据清洗、数据预处理和数据探索,并描述了如何将结果变为生产应用,是运用Apache Spark进行大数据分析和处理的实战宝典。

根据新版Spark最佳实践,对样例代码和所用资料做了大量更新。涵盖模式如下:

● 音乐推荐和Audioscrobbler数据集● 用决策树算法预测森林植被● 基于K均值聚类进行网络流量异常检测

● 基于潜在语义算法分析维基百科● 用GraphX分析伴生网络● 对纽约出租车轨迹进行空间和时间数据分析

● 通过蒙特卡罗模拟来评估金融风险● 基因数据分析和BDG项目● 用PySpark和Thunder分析神经图像数据

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容