?703. 数据流中第K大元素(Python)

题目

难度:★★☆☆☆
类型:堆

设计一个找到数据流中第K大元素的类(class)。注意是排序后的第K大元素,不是第K个不同的元素。

你的 KthLargest 类需要一个同时接收整数 k 和整数数组nums 的构造器,它包含数据流中的初始元素。每次调用 KthLargest.add,返回当前数据流中第K大的元素。

说明
你可以假设 nums 的长度≥ k-1 且k ≥ 1。

示例:

int k = 3;
int[] arr = [4,5,8,2];
KthLargest kthLargest = new KthLargest(3, arr);
kthLargest.add(3); // returns 4
kthLargest.add(5); // returns 5
kthLargest.add(10); // returns 5
kthLargest.add(9); // returns 8
kthLargest.add(4); // returns 8

题目

使用小顶堆实现的优先队列,Python 中标准库 heapq 就是小顶堆,详情可见【使用python中heapq模块实现堆排序】

import heapq


class KthLargest:
    def __init__(self, k, nums):
        self.pool = nums
        self.k = k
        heapq.heapify(self.pool)
        while len(self.pool) > k:
            heapq.heappop(self.pool)

    def add(self, val: int) -> int:
        if len(self.pool) < self.k:
            heapq.heappush(self.pool, val)
        elif val > self.pool[0]:
            heapq.heapreplace(self.pool, val)
        return self.pool[0]

# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)

如有疑问或建议,欢迎评论区留言~

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容