智慧医疗解决方案会是拯救医疗的英雄吗?

人工智能系统AlphaGo已经在围棋领域证明了自己的能力,AI在语音识别、人脸识别、机器人、自动驾驶等领域同样取得了巨大的进展,而医疗作为和科技紧密联系最紧的领域更是备受关注。智能医疗作为医疗方向的补充,将会大大提升用户体验!

        优质医疗资源短缺是全球面临的共同问题,这要靠医疗和科技界人士在已有的医疗资源供求环境中挖掘“增量价值”,创造出提高效率的解决方案以普惠民众。摆在医疗机构管理者和科技企业家们面前的是,如何将顶尖医学专家的学识和诊断经验进行快速复制,训练成更多模拟专家诊断路径的“人工智能医学专家”,这样做的好处是,用AI代替人工,可复制的模式降低了培养高级医学人才的成本。

        在中国,还有20%的县级医院没有眼科(数据来源于,2016年中华医学会第二十一次全国眼科学术大会),资源分布不均匀,导致很多偏远区域的医疗资源短缺,并且中国眼科医师尤其是眼底专业医师较少,且多分布在城市大医院,我国约有1.14亿糖尿病患者,中国的眼科医生约为3.6万余名,患医比达到惊人的3166:1,这令医院和医生负担很重。

        在类似眼科等医生非常稀缺的领域,人工智能则可发挥其独特的价值,辅助医生们的日常工作,大幅提升工作效率。

        目前人工智能技术日趋成熟,已经可以在多个领域为医疗提供服务,比如医学影像识别,帮助医生更快更准地读取病人的影像所见;比如临床诊断辅助系统等医疗服务,应用于早期筛查、诊断、康复、手术风险评估场景;比如药物研发,解决药品研发周期长成本高的问题等。这些都是智慧医疗层面的突破。

        早在2012年,在深度学习尚未进入爆发阶段时,我国的研究人员已经意识到基于深度学习的人工智能图像识别能力,可以用在医学图像的识别和分析上。与传统的图像识别算法不同,识别医学图像需要算法具有极高的准确率和可靠性。

        “我们搭建了多个强大的深度神经网络,通过和顶级医院合作,在大量的医学图像上进行标注和持续迭代训练,使得深度神经网络可以不断从中学习,最终产出灵敏度和特异性与人类医学专家接近甚至持平的识别模型。类似的模式,还被引用到了CT、MRI、X光、心电等领域”。

        近年来眼科疾病病发率持续增高,我国的研究人员在多年之前就意识到眼科疾病会为成为患者的困扰。比如糖尿病性视网膜病变是最常见的糖尿病并发症,糖尿病患者发病率约为25%~38%,失明几率较非糖尿病患者高25倍并且不可逆,目前全世界有数千万人患有这一疾病,已经成为四大致盲眼病之一。

        在糖尿病性视网膜病变领域已经取得了巨大的成果。花费大量时间从多家国内外顶级医院收集了数十万张眼底照片,构建超过100层卷积神经网络,准确解析原始图像的高阶信息,单次迭代持续训练超过120小时,最终研发出了糖尿病性视网膜病变辅助诊断模型,在灵敏性和特异性等主要指标上,获得了和人类医生相当的结果。

        在可以预见的未来,智慧医疗的发展,可以提升资深医生的阅片效率,让其有更多精力投入到学术研究和疑难杂症处理;可以辅助年轻医生进行快速准确的诊断和筛查;也可以助力公共卫生机构及基层医疗机构大面积疾病筛查。


| 朗锐慧康(www.lrioh.com),致力于提供实用的健康终端产品及技术方案,围绕“物联网+云健康”,打造医疗、健康、服务一体化数据平台。


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容

  • 《医疗革命》的读书笔记 作 者:邵学杰 出版社:中信出版社 版 次:2016年9月第1版 作者简介: 邵学杰:我国...
    格式化_001阅读 1,938评论 2 4
  • 之前未曾发现家乡如此之美,这次回去,大概是带着旅客的心情,发现那些习以为常或者不曾在意的美。 好久不见的竹...
    原心100阅读 742评论 0 0
  • 又一个彻夜失眠的夜晚,我决意留下这些文字,尽管理性的我在说何必苦苦纠缠过去,而感性的我在怂恿或许会有逆转的结局,但...
    若浔wfsindy阅读 364评论 1 1