图解LeetCode——662. 二叉树最大宽度(难度:中等)

一、题目

给你一棵二叉树的根节点 root ,返回树的 最大宽度

树的 最大宽度 是所有层中最大的 宽度

每一层的 宽度 被定义为该层最左和最右的非空节点(即,两个端点)之间的长度。将这个二叉树视作与满二叉树结构相同,两端点间会出现一些延伸到这一层的 null 节点,这些 null 节点也计入长度。

题目数据保证答案将会在 32 位 带符号整数范围内。

二、示例

2.1> 示例 1:

【输入】root = [1,3,2,5,3,null,9]
【输出】4
【解释】最大宽度出现在树的第 3 层,宽度为 4 (5,3,null,9) 。

2.2> 示例 2:

【输入】root = [1,3,2,5,null,null,9,6,null,7]
【输出】7
【解释】最大宽度出现在树的第 4 层,宽度为 7 (6,null,null,null,null,null,7) 。

2.3> 示例 3:

【输入】root = [1,3,2,5]
【输出】2
【解释】最大宽度出现在树的第 2 层,宽度为 2 (3,2) 。

提示:

  • 树中节点的数目范围是 [1, 3000]
  • -100 <= Node.val <= 100

三、解题思路

3.1> 思路1:广度优先 + 节点编号

根据题意,要统计树的最大宽度是所有层中最大的宽度。那么,既然涉及到要对每一层的树节点进行操作,我们会很自然的想到要用广度优先遍历。但是,如果采用广度优先算法,我们遇到的一个麻烦就是,如何去处理空节点?类似于,一个节点它只有一个子节点。这种空节点也是需要被统计在内的。所以,首先考虑的一个办法是,采用构建一个空的虚拟节点,由于题目中提示:-100 <= Node.val <= 100,所以我们可以指定虚拟节点的val值为-101,即:如果发现没有左子节点或者右子节点的话,我们就创建一个new TreeNode(-101, null, null)。这样,就可以构建一个全都有字节点的二叉树了。

那么,由于没有子节点就创建空的虚拟节点,如果不添加某个判断条件,这种构建空节点的操作将会无限的创建下去。那么我们可以通过判断某一层的节点值是否有非-101的,如果节点的val值都是-101,则说明这一层都是空节点,结束循环操作。如下图所示:

构建虚拟的空节点虽然可以满足题目的计算逻辑,但是,由于要大量的创建空的虚拟节点,而且越到层级越深且该层级真是节点越少,那么创建的空节点将会非常的多,那么在提交的时候,就会造成超出内存限制的问题。

那么,除了创建虚拟节点,我们还有什么办法呢?其实,通过观察我们会发现一个规律:假设根节点的编号为1,左子节点为2,右子节点为3……以此类推,会得出如下结论:

root的编号=N
root.left的编号=2N
root.right的编号=2
N + 1

那么我们通过编号就可以计算同层中两个节点直间的距离了。我们还是以root = [1,3,2,5,null,null,9,6,null,7]为例,看看通过编号怎么去解题。

对于编号的存储,我们可以创建一个对象,里面包含编号和TreeNode这两个变量,也可以使用JDK内置的Pair对象,由于本题中,节点的val值没有任何用处,所以,编号我就存储到了val属性值中,这样更易于存储和获取。具体实现,请参照:4.1> 代码1:广度优先 + 节点编号

3.2> 思路2:深度优先 + 节点编号

既然广度优先可以解决该问题,那么理论上,通过深度优先也是可以解题的。由于深度优先,是先从最上层沿着一条父子关系链遍历的下层,类似一个分支一个分支的去遍历,那么,我们就需要一个Map来帮助我们存储层级与当前层级最小值的对应关系了——即:key=levelvalue=minValue。那么,我们每当遍历一个节点时,就可以通过当前的level值去获取最小节点值:

如果Map中不存在该level的最小值,则将该节点的值放入到map中作为当前level下的最小值;

如果存在,那么则用当前节点值node.val减去从Map中获取的当前level下的最小值;

我们还是以root = [1,3,2,5,null,null,9,6,null,7]为例,看看通过深度优先怎么去解题。请见下图:

针对于采用深度优先算法的具体实现,请参照:4.2> 代码2:深度优先 + 节点编号

四、代码实现

4.1> 代码1:广度优先 + 节点编号

class Solution {
    public int widthOfBinaryTree(TreeNode root) {
        int result = 0;
        Deque<TreeNode> deque = new ArrayDeque();
        deque.addLast(new TreeNode(1, root.left, root.right));
        while(!deque.isEmpty()) {
            int count = deque.size(), startIndex = -1, endIndex = -1;
            for (int i = 0; i < count; i++) {
                TreeNode node = deque.pop();
                endIndex = node.val;
                if (startIndex == -1) startIndex = node.val;
                if (node.left != null) deque.addLast(new TreeNode(node.val * 2, node.left.left, node.left.right));
                if (node.right != null) deque.addLast(new TreeNode(node.val * 2 + 1, node.right.left, node.right.right));
            }
            result = Math.max(result, endIndex - startIndex + 1);
        }
        return result;
    }
}

4.2> 代码2:深度优先 + 节点编号

class Solution {
    int result = 0;
    Map<Integer, Integer> minValue = new HashMap();
    public int widthOfBinaryTree(TreeNode root) {
        depth(root, 1, 0);
        return result;
    }

    public void depth(TreeNode node , int nodeIndex, int level) {
        if (node == null) return;
        minValue.putIfAbsent(level, nodeIndex);
        result = Math.max(result, nodeIndex - minValue.get(level) + 1);
        depth(node.left, 2 * nodeIndex, level + 1);
        depth(node.right, 2 * nodeIndex + 1, level + 1);
    }
}

今天的文章内容就这些了:

写作不易,笔者几个小时甚至数天完成的一篇文章,只愿换来您几秒钟的 点赞 & 分享

更多技术干货,欢迎大家关注公众号“爪哇缪斯” ~ \(o)/ ~ 「干货分享,每天更新」

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,076评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,658评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,732评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,493评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,591评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,598评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,601评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,348评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,797评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,114评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,278评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,953评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,585评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,202评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,180评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,139评论 2 352

推荐阅读更多精彩内容