题目
Given an integer n, return the number of trailing zeroes in n!.
Note: Your solution should be in logarithmic time complexity.
思路
- 后面的0是2*5产生的, 因为2的因子数量永远比5多,所以我们只要找有多少个5就好了
- 像25这种数,里面有两个5的因子,怎么办? 举个例子,100!里面,有一个5的因子数的个数是100/5 = 20, 有两个5的因子个数是100/25 = 4。所以一共有24个。所以我们就可以用100一直除以5,把所得数相加。
Python
递归
class Solution(object):
def trailingZeroes(self, n):
"""
:type n: int
:rtype: int
"""
#A very smart question, 2 is always ample, so we only need to care about the factor of 5
return 0 if n == 0 else n/5 + self.trailingZeroes(n/5)
循环
class Solution(object):
def trailingZeroes(self, n):
"""
:type n: int
:rtype: int
"""
#A very smart question, 2 is always ample, so we only need to care about the factor of 5
res = 0
while n > 0:
n /= 5
res += n
return res