泊松(Poisson)分布

知乎:泊松分布 (Poisson Distributions) 的推导&二项分布、泊松分布到底该如何近似计算?
阮一峰:泊松分布和指数分布:10分钟教程泊松分布与美国枪击案

非严格定义(此处更多的是基于自己的理解)

看了很多文章对于泊松分布的介绍都提到了这样几句话

  1. 泊松分布二项分布的极限情况
  2. 如果试验次数n很大,二项分布的概率p很小,且乘积λ= np比较适中,则事件出现的次数的概率可以用泊松分布来逼近

这两句话开始带给我一个极大的迷惑性,所谓的极限情况具体是什么,"很大","很小","比较适中"这几个词所表示的含义真的是很模糊

目前为止我是这样理解这几句话的,我们在进行任何实验时都会选定一个观测的基本度量区间,例如一次抛硬币实验,一天婴儿出生个数,一个小时通过的车辆,这里的一次、一天、一个小时就是我所说的基本度量区间。

在这个基本区间内,实验的结果可以认为是恒定的,即一次伯努利试验的概率p可以计算出来,但如果我们把这个区间划分为无穷个小区间,即n—>∞,那么p—>0,那么λ=np就可以理解了

暂时抛开这个大区间的划分,我们从这个无穷小的区间来观察问题

其实类似求在n个小时内,出生婴儿为k个的概率,依然可以以二项分布的概念来理解,虽然看起来不像抛硬币那么直观

我们把时间划分为n个无限小的时间点,大小为w,那么n个小时,就等于进行了N=n/w次伯努利实验,每次结果要么是出生,要么是不出生,虽然此时的出生概率pi无限趋近于0,那么求上面问题,就成了一个很直观的求二项分布的问题,我想也即可以理解某些文章说的泊松分布把离散的伯努利实验变为了连续

这样看起来的话,任何求概率的问题其实都是用二项分布的概率质量函数来计算,但实际这根本不可能求的出来,做上述统计的统计时,根本不可能统计一个无限小的时间点上发生事件的概率,所以我们还得从大区间(即上面说的基本度量区间)的角度来统计问题,仔细思考泊松分布的推导,它就是采用求极限的方式把从这个无限小的区间内求解问题转化为从大区间来求解,即只使用基本度量区间的期望值来求解

但因为是求极限,所以也就有了上面的疑惑的第二句话的答案,试验次数n越大,二项分布的概率p越小,泊松分布就越逼近二项分布
(此处疑问,到底多大算大,多小算小,上面给出的张老师的文章有讲解,但表格我暂时没太看懂)

公式推导

知乎那篇文章,是我看到的觉得最好的一篇关于泊松分布的文章,所以就不重复的贴公式了

补充几个当时看了有些疑惑的地方:




关于这串公式的转换过程中二项式系数从第二步到第三步的转换,注意分母要用分数的乘法法则,而不是加法法则,这属于当时我看的时候脑袋没转过弯来,不过我看原文评论里有个人和我有同样的疑惑,所以在这里就贴一下

再就是


我想换成



更好理解一些

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容