给定一个非负整数 num。对于 0 ≤ i ≤ num 范围中的每个数字 i ,计算其二进制数中的 1 的数目并将它们作为数组返回。
示例 1:
输入: 2
输出: [0,1,1]示例 2:
输入: 5
输出: [0,1,1,2,1,2]
进阶:
- 给出时间复杂度为O(n*sizeof(integer))的解答非常容易。但你可以在线性时间O(n)内用一趟扫描做到吗?
- 要求算法的空间复杂度为O(n)。
- 你能进一步完善解法吗?要求在C++或任何其他语言中不使用任何内置函数(如 C++ 中*的 __builtin_popcount)来执行此操作。
解题思路
1、创建一个数组,这个数组得length是num+1, 因为按题目意思,包含本身
2、要知道每一个数中二进制1得个数,首先不停得操作 i%2 如果余数为1 就是有1
代码
class Solution {
public int[] countBits(int num) {
int []arr=new int[num+1];
for(int i=0;i<num+1;i++){
int n=0;
int su=i;
while(su>0){
if(su%2==1){
n++;
}
su /=2;
}
arr[i]=n;
}
return arr;
}
}
上面得方法用了20ms,比其他人慢10倍,主要是 % / 运算花费时间,
改进后,使用 x&= (x-1),用位运算会快很多,因为二进制运算直接运行在机器语言上,比较快
- x&= (x-1) 这个就每次x&(x-1)都会消除一个 1 所以 ones++,比喻如果是x=10
10&9==>1010 & 1001 = 1000 结果为8这里ones=1,
8&7==>1000 & 0111 = 0000 结果为8这里ones=2,
所以10有2个1;
class Solution {
public int[] countBits(int num) {
int[] bits = new int[num + 1];
for (int i = 0; i <= num; i++) {
bits[i] = countOnes(i);
}
return bits;
}
public int countOnes(int x) {
int ones = 0;
while (x > 0) {
x &= (x - 1);
ones++;
}
return ones;
}
}