机器学习新手学习记录(二)

(一)编码器

自编码:一种神经网络的形式

自编码就是把信息压缩再把信息解压,完成这种形式的神经网络。

例如,图片经过压缩,再解压的这一道工序. 当压缩的时候, 原有的图片质量被缩减, 解压时用信息量小却包含了所有关键信息的文件恢复出原本的图片. 

当神经网络要接受大量的输入信息,我们就可以使用这种神经网络形式。我们先进行压缩,提取最具代表性的信息,缩减输入信息量。这样再把压缩过的信息放进神经网络学习,这样学习就更加轻松了。所以, 自编码就能在这时发挥作用. 通过将原数据白色的X 压缩, 解压 成黑色的X, 然后通过对比黑白 X ,求出预测误差, 进行反向传递, 逐步提升自编码的准确性. 训练好的自编码中间这一部分就是能总结原数据的精髓. 也就是说,自编码的作用是压缩数据,提取原数据的精髓。

(1)编码器

到了真正使用自编码的时候. 通常只会用到自编码前半部分.这一部分也被称作encoder 编码器。编码器能得到原数据的精髓, 然后我们只需要再创建一个小的神经网络学习这个精髓的数据,不仅减少了神经网络的负担, 而且同样能达到很好的效果.

通过自编码整理出来的数据, 他能从原数据中总结出每种类型数据的特征,如果把这些特征类型都放在一张二维的图片上, 每种类型都已经被很好的用原数据的精髓区分开来, 自编码 可以像 PCA 一样 给特征属性降维.

(2)解码器

简单来说,解码器就是把精髓信息解压成原始信息。

(二)生成对抗网络(GAN)

GAN, 又称生成对抗网络, 也是 Generative Adversarial Nets 的简称.

卷积神经网络(CNN)和循环神经网络(RNN)都是需要提供数据的,然后得到自己想要的结果。像图片识别,语音识别。

而GAN是通过一些随机数字生成一些有意义的东西。

Generator 会根据随机数来生成有意义的数据 , Discriminator 会学习如何判断哪些是真实数据 , 哪些是生成数据, 然后将学习的经验反向传递给 Generator, 让 Generator 能根据随机数生成更像真实数据的数据。

也就是说,机器在创作有意义事物时,会把事物穿给鉴别部分进行鉴别,但是操作者要对鉴别机器进行管理,告诉鉴别机器哪个是有意义的事物。鉴别机器通过不断学习,终于会鉴别有意义的事物,并且会把学习经验反馈给创作机器,让创作机器生成更多的有意义的

(三)如何检测神经网络

(1)在检验神经网络误差时,我们把数据分成70%的训练数据和30%的测试数据,对神经网络的评价一般基于测试数据

(2)关于回归问题,, 我们可以引用 R2 分数在测量回归问题的精度 . R2给出的最大精度也是100%, 所以分类和回归就都有的统一的精度标准. 除了这些评分标准, 我们还有很多其他的标准, 比如 F1 分数 , 用于测量不均衡数据的精度.

(3)我们的神经网络在训练时表现非常好,但是测试时发现神经网络的误差又十分大,我们把这种成做为过拟合。在机器学习中, 解决过拟合也有很多方法 , 比如 l1, l2 正规化, dropout 方法.

(4)神经网络也有很多参数, 需要调参时, 交叉验证 就是最好的途径了. 交叉验证不仅仅可以用于神经网络的调参, 还能用于其他机器学习方法的调参. 同样是选择你想观看的误差值或者是精确度。

【参考文献】https://mofanpy.com/tutorials/machine-learning/ML-intro/Evaluate-NN/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,576评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,515评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,017评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,626评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,625评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,255评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,825评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,729评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,271评论 1 320
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,363评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,498评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,183评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,867评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,338评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,458评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,906评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,507评论 2 359

推荐阅读更多精彩内容