题目:
Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s ="aab",
Return 1 since the palindrome partitioning["aa","b"]could be produced using 1 cut.
给定字符串s,分区的每个子字符串都是回文。返回s的回文分区所需的最小切割数。
例如,给定s=“aab”,返回1,因为回文分区[“aa”,“b”]可以切割1次生成
思路:
动态规划
dp[i] - 表示子串(0,i)的最小回文切割,则最优解在dp[s.length-1]中
分几种情况:
1.初始化:当字串s.substring(0,i+1)(包括i位置的字符)是回文时,dp[i] =0(表示不需要分割);否则,dp[i] = i(表示至多分割i次)
2.对于任意大于1的i,如果s.substring(j,i+1)(j<=i,即遍历i之前的每个子串)是回文时,dp[i] = min(dp[i],dp[j-1]+1);
3.如果s.substring(j,i+1)(j<=i)不是回文时,dp[i] = min(dp[i],dp[j-1]+i+1-j);
public class Solution {
public int minCut(String s) {
int[] dp = new int[s.length()];
for(int i=0;i<s.length();i++){
dp[i] = isPalindrome(s.substring(0, i+1))?0:i;
if(dp[i] == 0)
continue;
for(int j=1;j<=i;j++){
if(isPalindrome(s.substring(j, i+1)))
dp[i] = Math.min(dp[i], dp[j-1]+1);
else
dp[i] = Math.min(dp[i], dp[j-1]+i+1-j);
}
}
return dp[dp.length-1];
}
private boolean isPalindrome(String s){
return new StringBuffer(s).reverse().toString().equals(s);
}
}