主内存和本地内存
在计算机中,cpu和内存的交互最为频繁,相比内存,磁盘读写太慢,内存相当于高速的缓冲区。
但是随着cpu的发展,内存的读写速度也远远赶不上cpu。因此cpu厂商在每颗cpu上加上高速缓存,用于缓解这种情况。现在cpu和内存的交互大致如下。
cpu上加入了高速缓存这样做解决了处理器和内存的矛盾(一快一慢),但是引来的新的问题 —— 缓存一致性
在多核cpu中,每个处理器都有各自的高速缓存(L1,L2,L3),而主内存确只有一个 。CPU要读取一个数据时,首先从一级缓存中查找,如果没有找到再从二级缓存中查找,如果还是没有就从三级缓存或内存中查找,每个cpu有且只有一套自己的缓存。因为这些缓存的出现,提高了数据访问性能,避免每次都向内存索取,但是弊端也很明显,不能实时的和内存发生信息交换,分在不同CPU执行的不同线程对同一个变量的缓存值不同。
为了解决缓存一致性问题在CPU的层面,内存模型定义了一个充分必要条件,保证其它CPU的写入动作对该CPU是可见的,而且该CPU的写入动作对其它CPU也是可见的,那这种可见性,应该如何实现呢?
有些处理器提供了强内存模型,所有CPU在任何时候都能看到内存中任意位置相同的值,这种完全是硬件提供的支持。
其它处理器,提供了弱内存模型,需要执行一些特殊指令(就是经常看到或者听到的,memory barriers内存屏障),刷新CPU缓存的数据到内存中,保证这个写操作能够被其它CPU可见,或者将CPU缓存的数据设置为无效状态,保证其它CPU的写操作对本CPU可见。通常这些内存屏障的行为由底层实现,对于上层语言的程序员来说是透明的。