第一讲

第一讲:一维运动的描述

知识点

  • 运动的基本概念
  • 知运动求力,求导法
  • 知力求运动,微分方程法
    • 寻找核心方程
    • 紧扣目标,借助定义、完成变量代换
    • 分离变量,得到微分方程
    • 两边定积分
  • 特殊模型:收尾速度
表达题

  • 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等。已知质点沿x 轴作直线运动,其运动方程为x(t)=2+6t^{2}-2t^{3} ,则4.0 s内质点的位移和所通过的路程分别为

解答:质点在4.0 s内位移的大小 \Delta x=x(4)-x(0)=-32。由\frac{dx}{dt}=0知,质点换向时刻为t=2. 在(0~2)时段和(2~4)时段,均做单向直线运动。(0~2)时段的路程为|x(2)-x(0)=8,(2~4)时段的路程为|x(4)-x(2)|=40,总路程为48.

  • 已知a=3v^{2}+2,这是一个关于 av 的方程。求v(t)

解答: v= \frac{dx}{dt}
微分方程为:\frac{dx}{dt}=3v^2+2

  • 已知x=\frac{g}{2}t^{2}+3t+5,则加速度为

解答:a(t)=\frac{dv}{dt}=\frac{d(gt+3)}{dt}=g

  • 已知a=4t^{2},这是一个关于 at 的方程。求v(t)

解答:a=\frac{dv}{dt} 。微分方程为\frac{dv}{dt}=4t^{2}

  • 已知v=4t^{2},求x(t)

解答:把v 变量代换为只含xt 的表达式 v=\frac{dx}{dt} 。微分方程为\frac{dx}{dt}=4t^{2}

  • 已知v=3x^{2}+2,求x(t)

解答:把v 变量代换为只含xt 的表达式 v=\frac{dx}{dt} 。微分方程为\frac{dx}{dt}=3x^{2}+2

  • 已知x=\frac{g}{2}t^{2}+3t+5,则速率和加速度的表达式

解答:v(t)=\frac{dx}{dt}=gt+3
a(t)=\frac{dv}{dt}=g

  • 运动问题中,经常需处理两个物体的速度关系。处理方法是先找到两个物体的位置间的关系,求导即可得到速度间的关系。请温习课本P15页例1.3,并完成下题。如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v_{0}收绳,绳不伸长且湖水静止,小船的速率为v,则小船作(  )

解答:本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t时刻定滑轮距小船的绳长为l,则小船的位置为x.
lx间满足的方程为x^{2}=l^{2}-h^{2} ,其中h为常数.两边求导得2x\cdot\frac{dx}{dt}=2l\cdot\frac{dl}{dt}\frac{dl}{dt}表示绳长l随时间的变化率,其大小即为v_{0};由于小船沿着负向运动,\frac{dx}{dt}=-v.

  • What is the topic of the following paragraph?
    In physics, we always begin with the motion of points; perhaps we should think of them as atoms, but it is probably better to be more rough in the beginning and simply to think of some kind of small objects—small, that is, compared with the distance moved.

解答:质点的运动

  • 已知a=3x^{2}+2,这是一个关于 ax 的方程。求v(x)

解答:a=\frac{dv}{dt}=\frac{dv}{dx}\cdot\frac{dx}{dt}=\frac{dv}{dx}v . 微分方程为\frac{dv}{dx}v=3x^{2}+2 .

  • 已知\frac{dv}{dt}=4t^{2},请分离变量

解答:dv=4t^{2}dt

  • 已知\frac{dv}{dt}=3v^{2}+2,请分离变量

解答:\frac{1}{3v^{2}+2}dv=dt

  • 已知\frac{dv}{dx}v=3x^{2}+2,请分离变量

解答:vdv=(3x^{2}+2)dx

  • 质点沿直线运动, 加速度a=4-t^{2}.如果当t=3 时,x=9,v=2 , 求质点的运动方程x(t)

解答:x=2t^{2}-\frac{1}{12}t^{4}+0.75. 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须用积分法解决.由 a=\frac{dv}{dt}v=\frac{dx}{dt} 可得dv=adtdx=vdt .如a=a(t)v=v(t),则可两边直接积分.如果av不是时间t 的显函数,则应经过诸如分离变量或变量代换后再做积分。由分析知,应有 \int_{v_{0}}^{v}dv=\int_{0}^{t}adtv=4t-\frac{1}{3}t^{3}+v_{0}. 由\int_{x_{0}}^{x}dx=\int_{0}^{t}vdtx=2t^{2}-\frac{1}{12}t^{4}+x_{0} . 将t=3 时, x=9 , v=2 以上两式得v_{0}=-1, x_{0}=0.75 .于是可得质点运动方程为 x=2t^{2}-\frac{1}{12}t^{4}+0.75 .

  • 终端速度(Terminal Velocity):当对物体的抵抗力与其速度同时增大时,物体将稳定在一定的速度上,此时的速度即为终端速度。详见百科介绍。一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度

    a=A-Bv,

    式中AB 为正恒量, 则石子下落速度v(t)

解答:需将式a(v)=\frac{dv}{dt}分离变量为\frac{dv}{a(v)}=dt 后再两边积分.选取石子下落方向为y轴正向,下落起点为坐标原点. 由题意知 a=\frac{dv}{dt}=A-Bv , 用分离变量法改写为\frac{dv}{A-Bv}=dt . 两边积分并考虑初始条件,有 \int_{v_{0}}^{v}\frac{dv}{A-Bv}=\int_{0}^{t}dt得石子速度v=\frac{A}{B}(1-e^{-Bt}) . 由此可知当,t\rightarrow\infty 时,v\rightarrow\frac{A}{B} 为一常量,通常称为极限速度或收尾速度.

  • 一质点沿x轴运动,其加速度为a=4t ,已知t=0 时,质点位于x_{0}=10 处,初速度为 v_{0}=0。求其位置和时间的关系式x(t)

解答:需将式 a(t)=\frac{dv}{dt} 分离变量为 a(t)dt=dv 后再两边积分(初学者请关注积分上下限的写法):\int_{0}^{t}4tdt=\int_{v_{0}}^{v}dv .得:v(t)=2t^{2}. 将此式继续写成微分方程:\frac{dx}{dt}=2t^{2},分离变量得:2t^{2}dt=dx。两边积分并注意积分上下限,得:\int_{0}^{t}2t^{2}dt=\int_{x_{0}}^{x}dx 。积分得:x-x_{0}=\frac{2}{3}t^{3},亦即x(t)=10+\frac{2}{3}t^{3} .

  • 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为kk 为正值常量。该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是

解答:匀速运动的方程为:mg-kv^{2}=ma=0,故v=\sqrt{\frac{mg}{k}}. 这种方法只能计算出最后匀速运动。中间没有达到平衡态时,只能用微分方程了。

  • 电动列车行驶时每千克质量所受的阻力F=3+2v^{2} ,式中,v 为列车速度. 当车速达到 v_{1} 时关掉电门(车子失去动力,只受阻力 F ),再运行( )后列车速度减至 v_{2}

解答:设车子质量为 m . 总阻力为 mF=m(3+2v^{2}) . 核心方程为 a=3+2v^{2} ,是关于 av 的方程。 题目要求的是关于 vx 的关系,所以需要变量代换:a=\frac{dv}{dt}=\frac{dv}{dx}\cdot\frac{dx}{dt}=\frac{dv}{dx}v 。于是得到关于 vx 的微分方程为 v\cdot\frac{dv}{dx}=3+2v^{2} ,可以帮我们算出 x(v) . 先分离变量得:dx=\frac{v}{3+2v^{2}}dv . 两边积分,注意积分上下限,得 \int_{0}^{x}dx=\int_{v_{1}}^{v_{2}}\frac{v}{3+2v^{2}}dv . 得到x=\frac{1}{4}\log\frac{v_{2}^{2}+\frac{3}{2}}{v_{1}^{2}+\frac{3}{2}} .

  • 质量为 m 的雨滴下降时,因受空气阻力,在落地前已是匀速运动,其速率为v=5.0 。设空气阻力大小与雨滴速率的平方成正比,当雨滴下降速率为v=4.0 时,其加速度a

解答:受力分析为 mg-kv^{2}=ma, 稳定后有mg-25k=0 , 故 k=\frac{mg}{25} . 中间过程是变速运动,核心方程为 a=g-\frac{k}{m}v^{2}=g-\frac{g}{25}v^{2} , 关于av 的方程。题目要求的是关于av 的关系,不需要进一步变量代换。直接计算得a=\frac{9}{25}g.

  • 已知一质量为m 的质点在 x 轴上运动,质点只受到指向原点的引力的作用,引力大小与质点离原点的距离 x 的平方成反比,即f=-\frac{k}{x^{2}}k 是常数。设质点在 x=A 时的速度为零,求质点在 x=A/4 处的速度的大小。

解答:受力分析为 f=-\frac{k}{x^{2}} . 核心方程为 a=-\frac{k}{mx^{2}} , 关于 ax 的方程。题目需要的是 vx 的方程,需要变量代换。a=\frac{dv}{dt}=\frac{dv}{dx}\cdot\frac{dx}{dt}=\frac{dv}{dx}\cdot v . 于是有\frac{dv}{dx}\cdot v=-\frac{k}{mx^{2}} . 分离变量得:vdv=-\frac{k}{mx^{2}}dx . 两边积分,注意上下限得 \int_{0}^{v}vdv=-\int_{A}^{\frac{A}{4}}\frac{k}{mx^{2}}dx . 最后得到 \sqrt{\frac{6k}{mA}} .

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,142评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,298评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,068评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,081评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,099评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,071评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,990评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,832评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,274评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,488评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,649评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,378评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,979评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,625评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,643评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,545评论 2 352

推荐阅读更多精彩内容

  • 第一讲:一维运动的描述 知识点 运动的基本概念 知运动求力,求导法 知力求运动,微分方程法寻找核心方程紧扣目标,借...
    冽凛阅读 1,461评论 0 1
  • 第一讲:一维运动的描述 知识点 运动的基本概念 知运动求力,求导法 知力求运动,微分方程法寻找核心方程紧扣目标,借...
    只是不想输阅读 1,345评论 0 0
  • 第一讲:一维运动的描述 知识点 运动的基本概念 知运动求力,求导法 知力求运动,微分方程法寻找核心方程紧扣目标,借...
    翔予阅读 493评论 0 0
  • 知识点 运动的基本概念 知运动求力,求导法 知力求运动,微分方程法寻找核心方程紧扣目标,借助定义、完成变量代换分离...
    低维量子系统阅读 981评论 0 2
  • 同学们大家好,今天我们学习必修一的第一节课,主要讲的是一些概念,讲质点和位移。那质点呢。是我们高中物理主要的一个物...
    耗子看家鸡上树阅读 741评论 0 0