flink-cdc同步mysql数据到hive

本文首发于我的个人博客网站: ikeguang.com

什么是CDC?

CDC是(Change Data Capture 变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的插入INSERT、更新UPDATE、删除DELETE等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。

[图片上传失败...(image-123e12-1664517332290)]

1. 环境准备

  • mysql

  • Hive

  • flink 1.13.5 on yarn

说明:如果没有安装hadoop,那么可以不用yarn,直接用flink standalone环境吧。

2. 下载下列依赖包

下面两个地址下载flink的依赖包,放在lib目录下面。

  1. 【flink-sql-connector-hive-2.2.0_2.11-1.13.5.jar】https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-hive-2.2.0_2.11/1.13.5/flink-sql-connector-hive-2.2.0_2.11-1.13.5.jar

如果你的Flink是其它版本,可以来【这里】https://repo.maven.apache.org/maven2/org/apache/flink下载。

说明:我hive版本是2.1.1,为啥这里我选择版本号是2.2.0呢,这是官方文档给出的版本对应关系:

Metastore version Maven dependency SQL Client JAR
1.0.0 - 1.2.2 flink-sql-connector-hive-1.2.2 Download
2.0.0 - 2.2.0 flink-sql-connector-hive-2.2.0 Download
2.3.0 - 2.3.6 flink-sql-connector-hive-2.3.6 Download
3.0.0 - 3.1.2 flink-sql-connector-hive-3.1.2 Download

官方文档地址在:https://nightlies.apache.org/flink/flink-docs-release-1.13/zh/docs/connectors/table/hive/overview/,可以自行查看。

3. 启动flink-sql client

  1. 先在yarn上面启动一个application,进入flink13.5目录,执行:
bin/yarn-session.sh -d -s 2 -jm 1024 -tm 2048 -qu root.sparkstreaming -nm flink-cdc-hive
  1. 进入flink sql命令行
bin/sql-client.sh embedded -s flink-cdc-hive

[图片上传失败...(image-46328f-1664517332290)]

4. 操作Hive

1) 首选创建一个catalog

CREATE CATALOG hive_catalog WITH (
    'type' = 'hive',
    'hive-conf-dir' = '/etc/hive/conf.cloudera.hive'
);

这里需要注意:hive-conf-dir是你的hive配置文件地址,里面需要有hive-site.xml这个主要的配置文件,你可以从hive节点复制那几个配置文件到本台机器上面。

2) 查询

此时我们应该做一些常规DDL操作,验证配置是否有问题:

use catalog hive_catalog;
show databases;

随便查询一张表

use test
show tables;
select * from people;

可能会报错:

[图片上传失败...(image-4e00a2-1664517332290)]

把hadoop-mapreduce-client-core-3.0.0.jar放到flink的Lib目录下,这是我的,实际要根据你的hadoop版本对应选择。

注意:很关键,把这个jar包放到Lib下面后,需要重启application,然后重新用yarn-session启动一个application,因为我发现好像有缓存,把这个application kill 掉,重启才行:

[图片上传失败...(image-e3b683-1664517332290)]

然后,数据可以查询了,查询结果:

[图片上传失败...(image-e23258-1664517332290)]

5. mysql数据同步到hive

mysql数据无法直接在flink sql导入hive,需要分成两步:

  1. mysql数据同步kafka;
  2. kafka数据同步hive;

至于mysql数据增量同步到kafka,前面有文章分析,这里不在概述;重点介绍kafka数据同步到hive。

1) 建表跟kafka关联绑定:

前面mysql同步到kafka,在flink sql里面建表,connector='upsert-kafka',这里有区别:

CREATE TABLE product_view_mysql_kafka_parser(
`id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp
) WITH (
 'connector' = 'kafka',
 'topic' = 'flink-cdc-kafka',
 'properties.bootstrap.servers' = 'kafka-001:9092',
 'scan.startup.mode' = 'earliest-offset',
 'format' = 'json'
);

2) 建一张hive表

创建hive需要指定SET table.sql-dialect=hive;,否则flink sql 命令行无法识别这个建表语法。为什么需要这样,可以看看这个文档Hive 方言

-- 创建一个catalag用户hive操作
CREATE CATALOG hive_catalog WITH (
    'type' = 'hive',
    'hive-conf-dir' = '/etc/hive/conf.cloudera.hive'
);
use catalog hive_catalog;

-- 可以看到我们的hive里面有哪些数据库
show databases;
use test;
show tables;

上面我们可以现在看看hive里面有哪些数据库,有哪些表;接下来创建一张hive表:

CREATE TABLE product_view_kafka_hive_cdc (
  `id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp
) STORED AS parquet TBLPROPERTIES (
  'sink.partition-commit.trigger'='partition-time',
  'sink.partition-commit.delay'='0S',
  'sink.partition-commit.policy.kind'='metastore,success-file',
  'auto-compaction'='true',
  'compaction.file-size'='128MB'
);

然后做数据同步:

insert into hive_catalog.test.product_view_kafka_hive_cdc
select * 
from 
default_catalog.default_database.product_view_mysql_kafka_parser;

注意:这里指定表名,我用的是catalog.database.table,这种格式,因为这是两个不同的库,需要明确指定catalog - database - table。

网上还有其它方案,关于mysql实时增量同步到hive:

[图片上传失败...(image-e9fab9-1664517332290)]

网上看到一篇写的实时数仓架构方案,觉得还可以:

[图片上传失败...(image-1fdd5a-1664517332290)]

参考资料

https://nightlies.apache.org/flink/flink-docs-release-1.13/zh/docs/connectors/table/hive/hive_dialect/

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,002评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,777评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,341评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,085评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,110评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,868评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,528评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,422评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,938评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,067评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,199评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,877评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,540评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,079评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,192评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,514评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,190评论 2 357

推荐阅读更多精彩内容