今天简单看了下HashMap的原理
数据插入过程
首先看看插入一个新数据的过程,执行put方法,这个方法会获取key对象的hash值,将hash,key和value封装成一个Node类型变量。
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
我们看下Node类型的代码,Node类型实现了Entry接口,它有一个Node类型的变量next,说明Node可以作为单向链表的元素,很可能HashMap的内部有一个单向链表。同时又看到HashMap内部有一个数组类型的变量
这可能是两种数据结构的结合使用。
transient Node<K,V>[] table;
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
然后回到put方法,接下来调用putVal方法。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab;
Node<K,V> p;
int n, i;
if ((tab = table) == null || (n = tab.length) == 0)//1
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)//2
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))//3
e = p;
else if (p instanceof TreeNode)//4
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {//5
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);//6
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)//7
resize();
afterNodeInsertion(evict);
return null;
}
1.如果table不存在或者为空,则重新创建table数组,resize方法后面再看。
2.根据元素的hash值查找它的位置,映射关系是(n - 1 ) & hash,以默认容量16为例,n-1=15,表示取hash值的末4位作为它的索引位置。如果该位置没有元素,直接放元素放入空位。
3.如果该索引已经存在,就判断该位置的key是否相同,相同就替换value值,返回旧value。
4.如果该索引位置的节点是一个红黑树节点,需要特殊处理,后面再看。
5.如果该索引位置有一个普通节点,开始遍历这个链表,找到链表末尾就插入节点,返回null。
6.如果该索引位置的链表长度已经达到阈值8个,通过treeifyBin方法对HashMap结构进行调整,后面再看。
7.如果该HashMap的大小已经达到容量,通过resize方法扩容,后面再看。
接下来看下我们前面提到的resize方法。
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)//1
newThr = oldThr << 1; // double threshold
}//2
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {//3
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)//4
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)//5
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {//6
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
1.如果当前数据大于默认容量16个,且扩容两倍后小于最大容量,将容量扩大两倍,同时将容量门限设置为原来两倍。
2.如果容量小于等于0,则重新初始化这个HashMap,默认容量16,加载因子0.75。
3.开始构造新表,需要将原来数据复制到新表,遍历旧表的每个元素。
4.如果该索引位置只有一个元素,直接复制到新表。
5.如果该位置是红黑树结点,需要特殊处理,后面再看。
6.如果该位置有一个链表,将该链表拆分成奇偶数两个链表分开存放,最后偶数链表放在原来位置,奇数链表放在j+oldCap位置。
Java8增加了一个红黑树优化,原因是旧版本在hash值冲突较多的情况下,查找时间是O(n),使用红黑树可以将查询时间优化为O(log n)。
前面提到当某个位置的链表长度超过8个的时候,会通过treeifyBin方法对数据结构进行调整,这里看下treeifyBin方法。
1.如果表为空,或者表长度小于最小树形化长度64,则进行扩容。
2.否则开始进行树形化,首先创建一个树形结点,内容跟原链表的头节点一致。树的头节点就是原链表头节点。接着遍历原链表,创建相同个数的树形节点,复制内容,建立起联系。
3.将桶的第一个元素指向树的头节点。
4.开始塑造红黑树。
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)//1
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {//2
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)//3
hd.treeify(tab);//4
}
}
接着看下红黑树的构造过程。
1.从头节点开始遍历红黑树。
2.头节点设置为黑色。
3.确定根结点为头节点。
4.确定非根结点x的位置,进入第二个循环,从根结点开始遍历。
5.把当前结点变成x的父结点。
6.如果当前结点hash值小于x,放在左孩子位置。
7.如果当前结点hash值大于x,放在右孩子位置。
8.对结点进行左旋或右旋操作,使二叉树成为红黑树。
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {//1
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;//2
root = x;//3
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;;) {//4
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;//5
if (dir <= 0)
xp.left = x;//6
else
xp.right = x;//7
root = balanceInsertion(root, x);//8
break;
}
}
}
}
moveRootToFront(tab, root);
}
上面过程创建了一个有序的二叉查找树,接下来还需要对结点进行左旋或右旋操作,使二叉树变成红黑树。具体看下balanceInsertion方法。
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
x.red = true;
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (!xp.red || (xpp = xp.parent) == null)
return root;
if (xp == (xppl = xpp.left)) {
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
else {
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}
数据查询过程
下面看下数据获取的过程,首先是get方法获取到Node结点。
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
getNode方法通过hash和key两个值查找。
1.通过(n - 1) & hash找到该元素所在的位置。
2.首先判断该位置链表的头节点,如果key相等,返回头节点。
3.如果该位置是一个红黑树结点,通过getTreeNode方法查找,查询时间是O(log n)。
4.如果是普通结点,顺序遍历链表,直到找到该元素,查询时间是O(n)。
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {//1
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;//2
if ((e = first.next) != null) {
if (first instanceof TreeNode)//3
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))//4
return e;
} while ((e = e.next) != null);
}
}
return null;
}
查找一个元素总是先通过hashCode找到元素所在的bucket(桶),然后通过equals从桶里再找到唯一的那个元素。
所以,如果要重写equals方法,就一定要重写hashCode方法,因为首先是通过hashCode方法查找的。
参考:
https://blog.csdn.net/tuke_tuke/article/details/51588156
https://blog.csdn.net/u011240877/article/details/53358305
https://www.cnblogs.com/skywang12345/p/3245399.html