最强讲解 位运算

.程序中的所有数在计算机内存中都是以二进制的形式储存的。

位运算就是直接对整数在内存中的二进制位进行操作

比如,and运算本来是一个逻辑运算符,但整数与整数之间也可以进行and运算。

举个例子,6的二进制是110,11的二进制是1011,那么6 and 11的结果就是2,

    1   0  1  1

and    1   1 0

     0    0  1 0

结果为  2

它是二进制对应位进行逻辑运算的结果(0表示False,1表示True,空位都当0处理)。

1、补码

   在总结按位运算前,有必要先介绍下补码的知识,我们知道当将一个十进制正整数转换为二进制数的时候,只需要通过除2取余的方法即可,但是怎么将一个十进制的负整数转换为二进制数呢?其实,负数是以补码的形式表示,其转换方式,简单的一句话就是:先按正数转换,然后取反加1。

要将十进制的-10用二进制表示,先将10用二进制表示:

0000 0000 0000 1010

取反:

1111 1111 1111 0101

加1:

1111 1111 1111 0110

所以,-10的二进制表示就是:1111 1111 1111 0110

2、按位与(&)

参加运算的两个数,换算为二进制(0、1)后,进行与运算。只有当相应位上的数都是1时,该位才取1,否则该为为0。

将10与-10进行按位与(&)运算:

0000 0000 0000 1010

1111 1111 1111 0110(取反之后的结果)

-----------------------

0000 0000 0000 0010

所以:10 & -10 = 0000 0000 0000 0010

3、按位或(|)

参加运算的两个数,换算为二进制(0、1)后,进行或运算。只要相应位上存在1,那么该位就取1,均不为1,即为0。

将10与-10进行按位或(|)运算:

0000 0000 0000 1010

1111 1111 1111 0110(取反之后的结果)

-----------------------

1111 1111 1111 1110

所以:10 | -10 = 1111 1111 1111 1110

4、按位异或(^)

参加运算的两个数,换算为二进制(0、1)后,进行异或运算。只有当相应位上的数字不相同时,该为才取1,若相同,即为0。

将10与-10进行按位异或(^)运算:

0000 0000 0000 1010

1111 1111 1111 0110

-----------------------

1111 1111 1111 1100

所以:10 ^ -10 = 1111 1111 1111 1100

   可以看出,任何数与0异或,结果都是其本身。利用异或还可以实现一个很好的交换算法,用于交换两个数,算法如下:

a = a ^ b;

b = b ^ a;

a = a ^ b;

5、取反(~)

   参加运算的两个数,换算为二进制(0、1)后,进行取反运算。每个位上都取相反值,1变成0,0变成1。

对10进行取反(~)运算:

0000 0000 0000 1010

---------------------

1111 1111 1111 0101

所以:~10 = 1111 1111 1111 0101

6、左移(<<).注意看清楚方向

   参加运算的两个数,换算为二进制(0、1)后,进行左移运算,用来将一个数各二进制位全部向左移动若干位。

对10左移2位(就相当于在右边加2个0):

0000 0000 0000 1010

--------------------

0000 0000 0010 1000

所以:10 << 2 = 0000 0000 0010 1000 = 40

注意,观察可以发现,左移一位的结果就是原值乘2,后面自动补0;左移两位的结果就是原值乘4。

7、右移(>>)

   参加运算的两个数,换算为二进制(0、1)后,进行右移运算,用来将一个数各二进制位全部向右移动若干位。

对10右移2位(就相当于在左边加2个0):

0000 0000 0000 1010

--------------------

0000 0000 0000 0010

所以:10 >> 2 = 0000 0000 0000 0010 = 2

   注意,观察可以发现,右移一位的结果就是原值除2,左移两位的结果就是原值除4,注意哦,除了以后没有小数位的,都是取整。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容