ppt huigui

因子

[if !supportLists]¢  [endif]一种特殊的向量,可对元素进行归类。

[if !supportLists]¢  [endif]创建factor对象

> f1<-factor(      paste("x",rep(c(1,2),3),

                            sep=""))

[1] x1 x2 x1 x2 x1 x2

Levels: x1 x2

[if !supportLists]¢  [endif]获得因子中不重复的元素

> levels(f1)

[1] "x1" "x2"

[if !supportLists]¢  [endif]获得因子中不重复元素的数目

> nlevels(f1)

[1] 2

[if !supportLists]¢  [endif]获得因子中元素的频数

> table(f1)

f1

x1 x2

 3  3

[if !supportLists]¢  [endif]将连续性变量进行切割,定义新的分组因子

> cut(1:20,breaks=5*(0:4))


> t(x)            #转置

> solve(x)            #矩阵的逆

> dim(x)       #获得矩阵的维数

> x[1,1]         #取出第1行、第1列元素

> x[c(1,3),]    #取出第1行、第3行元素

> x[,c(1,3)]    #取出第1列、第3列元素

> x[,”col2”]  #取出名称为col2的列

> x[”row2”,]        #取出名称为row2的行

> head(x)            #取出矩阵前6行

> tail(x)        #取出矩阵后6行



R 内置lm()函数,线性回归模型

> summary(lm(ds[,1]~ds[,-1]))$coefficients



自编函数

mystats <- function(x, parametric=TRUE,print=FALSE) {

                             if(parametric) {

   center <- round(mean(x),2); spread <-  round(sd(x),2)

  }else {

   center <-  round(median(x),2);spread <- round(quantile(x,c(0.25,0.75)) ,2)

  }

  if(print & parametric) {

   cat(paste0(center, "±", spread))

  }else if (print & !parametric) {

   cat(paste0(center, "(", spread[1],',',spread[2],')'))

  }

 result <- list(center=center, spread=spread)

 return(result)

}


转置

cars <- mtcars[1:5,1:4]



数据整理示意


Student <- c("John Davis","Angela Williams", "Bullwinkle Moose","DavidJones", "Janice Markhammer", "CherylCushing","Reuven Ytzrhak", "Greg Knox", "JoelEngland","Mary Rayburn")

Math <- c(502, 600, 412, 358, 495, 512,410, 625, 573, 522)

Science <- c(95, 99, 80, 82, 75, 85, 80,95, 89, 86)

English <- c(25, 22, 18, 15, 20, 28, 15,30, 27, 18)

roster <- data.frame(Student, Math,Science, English,stringsAsFactors=FALSE)


#将成绩单按照姓名进行排序

newdata<-roster[order(roster$student),]

roster[order(roster$Student),]


#将学生的各科考试成绩组合为单一的成绩衡量指标

sca<-scale(roster[,2:4])

sca


score<-apply(sca,1,mean)

score


roster<-cbind(roster,score)

roster


#基于相对名次(四等分)给出从A到D的评分(因子型)

y<-quantile(score,c(0.25,0.50,0.75))

y

roster$grade[score

roster$grade[score=y[1]]<-"C"

roster$grade[score=y[2]]<-"B"

roster$grade[score>=y[3]]<-"A"

roster



基础统计分析

#列联表

mytable <- with(,table())

mytable<- xtabs(~,data=)

library(gmodels)

t.test(y1,y2,paired = TRUE)#配对检验

aov()#方差分析

attach()

dose<-factor()

fit<- aov(len ~ supp*dose)

summary(fit)

¢相关性矩阵可视化

library(corrplot)#先加载包

corrplot(res,

type = "upper", order = "hclust", tl.col =

"black", tl.srt =45)



回归

简单线性回归

基础安装中的women数据,15个年龄在30~39岁间女性的身高和体重信息。

fit <- lm(weight ~ height, data=women)

summary(fit)

women$weight

fitted(fit)

residuals(fit)

plot(women$height,women$weight,xlab="Height (in inches)",ylab="Weight (in pounds)")

abline(fit)

多项式回归


fit2<- lm(weight ~ height + I(height^2), data=women)

summary(fit2)

plot(women$height,women$weight,

     xlab="Height (in inches)",

     ylab="Weight (in lbs)")

lines(women$height,fitted(fit2))

coef(fit2) #系数

coef(summary(fit2)) #假设检验结果

confint(fit2) #系数可信区间

箱线图

install.packages("car")

library(car)

scatterplot(weight ~ height, data=women,

            pch=19,

            main="Women Age 30-39",

            xlab="Height (inches)",

            ylab="Weight (lbs.)")

多重线性回归

state.x77

states <- as.data.frame(state.x77[,c("Murder","Population","Illiteracy", "Income", "Frost")])

cor(states)


library(car)

scatterplotMatrix(states,  main="Scatter Plot Matrix")

states <- as.data.frame(state.x77[,c("Murder", "Population","Illiteracy", "Income", "Frost")])

fit <- lm(Murder ~ Population + Illiteracy + Income + Frost,data=states)

summary(fit)

#有交互项的多重线性回归

fit <- lm(mpg ~ hp + wt + hp:wt, data=mtcars)

summary(fit)



#回归诊断

fit <- lm(weight ~ height, data=women)

Op <- par()

par(mfrow=c(2,2))

plot(fit)

par(Op)



states <- as.data.frame(state.x77[,c("Murder", "Population", "Illiteracy", "Income", "Frost")])

fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)

Op <- par()

par(mfrow=c(2,2))

plot(fit)

par(Op)

#基于car包的回归诊断

library(car)

states <- as.data.frame(state.x77[,c("Murder", "Population", "Illiteracy", "Income", "Frost")])

fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)

qqPlot(fit, labels=row.names(states), simulate=TRUE, main="Q-Q Plot")

#判断误差方差是否相等

library(car)

fit <- lm(Murder ~ Population + Illiteracy + Income + Frost, data=states)

ncvTest(fit)

spreadLevelPlot(fit)

#线性模型假设的综合验证

install.packages("gvlma")

library(gvlma)

fit <- lm(Murder ~ Population + Illiteracy + Income + Frost,

          data=data.frame(state.x77))

gvmodel <- gvlma(fit)

summary(gvmodel)

多重共线性诊断

library(car)

fit<- lm(Murder ~ Population + Illiteracy + Income + Frost,

          data=data.frame(state.x77))

vif(fit)

sqrt(vif(fit)) > 2

异常观测值离群点检验

library(car)

fit<- lm(Murder ~ Population + Illiteracy + Income + Frost,

          data=data.frame(state.x77))

outlierTest(fit)

异常观测值 高杠杆点

hat.plot <- function(fit) {

p<- length(coefficients(fit))

n<- length(fitted(fit))

plot(hatvalues(fit),main="Index Plot of Hat Values")

abline(h=c(2,3)*p/n, col="red", lty=2)

identify(1:n,hatvalues(fit),

names(hatvalues(fit)))

}

hat.plot(fit)

异常观测值 强影响点

cutoff<- 4/(nrow(state.x77)-length(fit$coefficients)-2)

plot(fit,which=4, cook.levels=cutoff)

abline(h=cutoff, lty=2, col="red")

car包 可以将强影响点 高杠杆点等整合到一张图片中

library(car)

influencePlot(fit,  main="Influence Plot",

              sub="Circle size isproportional to Cook's distance")

改进措施

library(car)

summary(powerTransform(state.x77[,'Murder'])) 变量变换

states

<- as.data.frame(state.x77[,c("Murder", "Population",

                                      "Illiteracy", "Income",  "Frost")])

fit1<- lm(Murder ~ Population + Illiteracy + Income + Frost,

             data=states)

fit2<- lm(Murder ~ Population + Illiteracy, data=states)

anova(fit2,fit1)

anova函数可以比较两个嵌套模型的拟合优度


fit1<- lm(Murder ~ Population + Illiteracy + Income + Frost,data=states)

fit2<- lm(Murder ~ Population + Illiteracy, data=states)

AIC(fit1,fit2) 优先考虑AIC小的模型


逐步回归 MASS包

library(MASS)

states<- as.data.frame(state.x77[,c("Murder", "Population","Illiteracy", "Income",

"Frost")])

fit<- lm(Murder ~ Population + Illiteracy + Income + Frost,data=states)

stepAIC(fit, direction="backward")


交叉验证

shrinkage<- function(fit, k=10){

require(bootstrap)

theta.fit <- function(x,y){lsfit(x,y)}

theta.predict <- function(fit,x){cbind(1,x)%*%fit$coef}

x<- fit$model[,2:ncol(fit$model)]

y<- fit$model[,1]

results<- crossval(x,

y, theta.fit, theta.predict, ngroup=k)

r2<- cor(y, fit$fitted.values)^2

r2cv<- cor(y, results$cv.fit)^2

cat("Original R-square =", r2, "\n")

cat(k,"Fold Cross-Validated R-square =", r2cv, "\n")

cat("Change=", r2-r2cv, "\n")

}

states<- as.data.frame(state.x77[,c("Murder",  "Population","Illiteracy", "Income","Frost")])

fit<- lm(Murder ~ Population + Income + Illiteracy + Frost, data=states)

shrinkage(fit)


states<- as.data.frame(state.x77[,c("Murder",  "Population","Illiteracy", "Income","Frost")])

fit<- lm(Murder ~ Population + Illiteracy + Frost, data=states)

shrinkage(fit)

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
禁止转载,如需转载请通过简信或评论联系作者。

推荐阅读更多精彩内容