轨迹推断中的细胞周期

轨迹推断,顾名思义是推断细胞分化状态的一种方法,然而现行的轨迹推断的方法都不能将周期纳入其中,但是总会有人这样想,然后实现了它。

library(Revelio)
library(Seurat)
library(SeuratData)
revelioTestData_rawDataMatrix[1:4,1:4]

        WT_CTTGTAGCGTCT WT_AATTTAAACTTG WT_GACAACCTCATC WT_ACCATACACACG
A1BG                  0               0               0               0
A2M                   0               0               0               0
A2M-AS1               0               0               0               0
A2MP1                 0               0               0               0

myData <- createRevelioObject(rawData = revelioTestData_rawDataMatrix,   #  revelioTestData_rawDataMatrix 
                              cyclicGenes = revelioTestData_cyclicGenes)
myData <- getCellCyclePhaseAssignInformation(dataList = myData)
head(myData@cellInfo)
                datasetID batchID          cellID  nUMI nGene ccPhase meanOfPhaseScore sdOfPhaseScore highestPhaseScore
WT_CTTGTAGCGTCT     data1      WT WT_CTTGTAGCGTCT 69992  9258      G2        0.8500887      0.1748365         1.5292065
WT_AATTTAAACTTG     data1      WT WT_AATTTAAACTTG 61152  8480      G2        0.8297719      0.3069856         0.8591345
WT_GACAACCTCATC     data1      WT WT_GACAACCTCATC 64340  9067       S        0.8096808      0.1185934         1.1576782
WT_ACCATACACACG     data1      WT WT_ACCATACACACG 64509  8794       S        0.8207118      0.1813450         1.4787240
WT_TTTCAGGCAGAC     data1      WT WT_TTTCAGGCAGAC 60750  8468    G1.S        0.7576278      0.1224292         1.1022062
WT_TGTATCTTATAT     data1      WT WT_TGTATCTTATAT 65781  8529    M.G1        0.6280796      0.2822224         1.5622928
                secondHighestPhaseScore      G1.S         S        G2      G2.M      M.G1 G1.S_zScore   S_zScore  G2_zScore
WT_CTTGTAGCGTCT               0.1644585 0.6529540 0.6998633 0.8727002 0.9508217 1.0741043  -0.3174031 -0.1465188  1.5292065
WT_AATTTAAACTTG               0.5741297 0.4137236 0.6147151 0.9367331 1.0254709 1.1582169  -1.5590611 -0.4339311  0.8591345
WT_GACAACCTCATC               1.0045966 0.7710146 0.8326568 0.7080084 0.7323286 1.0043958   1.0045966  1.1576782 -0.5149779
WT_ACCATACACACG               0.2387414 0.6034522 0.7511739 0.7997519 0.8486733 1.1005076  -0.8947453  1.4787240  0.1442364
WT_TTTCAGGCAGAC               1.0265113 0.7172310 0.7510659 0.6798175 0.6709441 0.9690804   1.1022062  1.0265113 -0.3701836
WT_TGTATCTTATAT               0.3051694 0.5168821 0.4061878 0.4772610 0.6279929 1.1120743   0.3051694 -0.9780575 -0.6834449
                G2.M_zScore M.G1_zScore isOutlierSuspectedDoublets isOutlierNoConfidenceInPhaseScore  ccAngle ccRadius
WT_CTTGTAGCGTCT   0.1644585  -1.2297432                      FALSE                             FALSE 1.445197 7.395479
WT_AATTTAAACTTG   0.5741297   0.5597280                      FALSE                             FALSE 1.088388 9.584398
WT_GACAACCTCATC  -0.9431705  -0.7041264                      FALSE                             FALSE 2.447252 8.011687
WT_ACCATACACACG  -0.9669564   0.2387414                      FALSE                             FALSE 1.931565 7.179339
WT_TTTCAGGCAGAC  -1.0344432  -0.7240907                      FALSE                             FALSE 2.515097 6.507658
WT_TGTATCTTATAT  -0.2059597   1.5622928                      FALSE                             FALSE 5.169606 4.757254
                   ccTime ccPercentage ccPercentageUniformlySpaced ccPositionIndex
WT_CTTGTAGCGTCT 14.883901    0.7699897                   0.7550035             344
WT_AATTTAAACTTG 15.981614    0.8267777                   0.8115942            1375
WT_GACAACCTCATC 11.801113    0.6105077                   0.6259489            1206
WT_ACCATACACACG 13.387608    0.6925819                   0.7039337            1251
WT_TTTCAGGCAGAC 11.592393    0.5997099                   0.6197378            1329
WT_TGTATCTTATAT  3.425888    0.1772317                   0.1145618             201
debug(getOptimalRotation)
myData <- getOptimalRotation(dataList = myData, boolPlotResults = TRUE)

真的还是有几分的周期的意思,那么它是如何做的呢?

先看每个细胞属于哪个周期的打分方法:

首先有一个revelioTestData_cyclicGenes 每个阶段特征表达的基因集,根据他们在每个细胞的表达情况来推断细胞的状态。

dim(revelioTestData_cyclicGenes)
[1] 216   5
revelioTestData_cyclicGenes[1:4,1:4]
     G1.S      S        G2    G2.M
1   ABCA7  ABCC2    ALKBH1    ADH4
2     ACD  ABCC5      ANLN    AHI1
3   ACYP1 ABHD10     AP3D1 AKIRIN2
4 ADAMTS1   ACPP ARHGAP11B ANKRD40

有了细胞的周期归属之后,我们需要在低维空间中考虑如何用黄环形结构来可视化它。在三维空间中,数据形成一个倾斜的圆柱体。如果我们旋转圆柱体并从顶部或底部查看它,一个清晰的细胞周期结构将变得可见。旋转的pc是原始pc的简单线性组合,是动态组件(DCs)。DC1和DC2跨越细胞周期。

那么具体的实现手法是怎样的呢?其实就是对低维空间的坐标做了一个环形转化,具体可以看源代码。有了环形数据结构之后,如果想在数据中连同细胞周期一起绘制,则可以用ggplot绘制相关的属性。

function (dataList, boolPlotResults = FALSE) 
{
  startTime <- Sys.time()
  cat(paste(Sys.time(), ": calculating optimal rotation: ", 
    sep = ""))
  dataList@transformedData$dc <- calculateOptimalRotation(pcaData = dataList@transformedData$pca$data, 
    pcaWeights = dataList@transformedData$pca$weights, pcaIsPCAssociatedWithCC = dataList@transformedData$pca$pcProperties$isComponentAssociatedWithCC, 
    ccPhaseInformation = dataList@cellInfo$ccPhase)
  cellCycleScore <- getCellCycleScoreForPCA(dataList@transformedData$dc$data, 
    dataList@cellInfo[, "ccPhase"])
  boolOutliers <- rep(FALSE, length(cellCycleScore))
  boolOutliers[1:(min(length(cellCycleScore), 100))] <- calculateOutliersInVector(data = as.vector(cellCycleScore[1:(min(length(cellCycleScore), 
    100))]), outlierThreshold = 2)
  dataList@transformedData$dc$dcProperties <- cbind(dataList@transformedData$dc$dcProperties, 
    ccScore = cellCycleScore, isComponentAssociatedWithCC = boolOutliers)
  thresholdForPCWeightToBeSignificant <- sqrt(1/dim(dataList@transformedData$pca$data)[1])
  ccGenesHelp <- rep(FALSE, dim(dataList@geneInfo)[1])
  names(ccGenesHelp) <- dataList@geneInfo[, "geneID"]
  ccGenesHelp[dataList@geneInfo$geneID[dataList@geneInfo$pcaGenes][which((abs(dataList@transformedData$dc$weights[1, 
    ]) > thresholdForPCWeightToBeSignificant) | (abs(dataList@transformedData$dc$weights[2, 
    ]) > thresholdForPCWeightToBeSignificant))]] <- TRUE
  dataList@geneInfo <- cbind(dataList@geneInfo, ccGenes = ccGenesHelp)
  dataList <- getRotation2D(dataList = dataList)
  dataList <- getCCSorting(dataList = dataList)
  cat(paste(round(Sys.time() - startTime, 2), attr(Sys.time() - 
    startTime, "units"), "\n", sep = ""))
  if (boolPlotResults) {
    plotParameters <- list()
    plotParameters$colorPaletteCellCyclePhasesGeneral <- c("#ac4343", 
      "#466caf", "#df8b3f", "#63b558", "#e8d760", "#61c5c7", 
      "#f04ddf", "#a555d4")
    plotParameters$plotLabelTextSize <- 8
    plotParameters$plotDotSize <- 0.1
    plotParameters$fontFamily <- "Helvetica"
    plotParameters$fontSize <- 8
    plotParameters$colorPaletteCellCyclePhasesGeneral <- plotParameters$colorPaletteCellCyclePhasesGeneral[1:length(levels(dataList@cellInfo$ccPhase))]
    names(plotParameters$colorPaletteCellCyclePhasesGeneral) <- levels(dataList@cellInfo$ccPhase)
    plotBoundary <- max(dataList@transformedData$dc$data[c("DC1", 
      "DC2"), ]) * 0.78
    ccPhaseBorderPathPolar <- data.frame(angle = rep(0, 
      7), radius = rep(0, 7))
    ccPhaseBorderPathPolar[c(1, 3, 5, 7), 1] <- 2 * pi * 
      (1 - cumsum(c(dataList@datasetInfo$ccDurationG1, 
        dataList@datasetInfo$ccDurationS, dataList@datasetInfo$ccDurationG2, 
        dataList@datasetInfo$ccDurationM))/dataList@datasetInfo$ccDurationTotal)
    ccPhaseBorderPathPolar[c(1, 3, 5, 7), 2] <- 50
    ccPhaseBorderPathCartesian <- ccPhaseBorderPathPolar
    ccPhaseBorderPathCartesian[, 1] <- ccPhaseBorderPathPolar[, 
      2] * cos(ccPhaseBorderPathPolar[, 1])
    ccPhaseBorderPathCartesian[, 2] <- ccPhaseBorderPathPolar[, 
      2] * sin(ccPhaseBorderPathPolar[, 1])
    colnames(ccPhaseBorderPathCartesian) <- c("xValue", 
      "yValue")
    labelPositionHelp <- append(2 * pi, ccPhaseBorderPathPolar[c(1, 
      3, 5, 7), 1])
    labelPositionHelp <- (labelPositionHelp[1:(length(labelPositionHelp) - 
      1)] - labelPositionHelp[2:length(labelPositionHelp)])/2 + 
      labelPositionHelp[2:length(labelPositionHelp)]
    labelRadiusHelp <- labelPositionHelp
    labelRadiusHelp[(labelRadiusHelp > pi/4) & (labelRadiusHelp < 
      3 * pi/4)] <- labelRadiusHelp[(labelRadiusHelp > 
      pi/4) & (labelRadiusHelp < 3 * pi/4)] - pi/2
    labelRadiusHelp[(labelRadiusHelp > 5 * pi/4) & (labelRadiusHelp < 
      7 * pi/4)] <- labelRadiusHelp[(labelRadiusHelp > 
      5 * pi/4) & (labelRadiusHelp < 7 * pi/4)] - pi/2
    labelPositionPolar <- data.frame(angle = labelPositionHelp, 
      radius = sqrt((plotBoundary * tan(labelRadiusHelp))^2 + 
        plotBoundary^2), label = c("G1", "S", "G2", 
        "M"))
    labelPositionCartesian <- labelPositionPolar
    labelPositionCartesian[, 1] <- labelPositionPolar[, 
      2] * cos(labelPositionPolar[, 1])
    labelPositionCartesian[, 2] <- labelPositionPolar[, 
      2] * sin(labelPositionPolar[, 1])
    colnames(labelPositionCartesian) <- c("xValue", "yValue", 
      "label")
    plotDC1DC2 <- ggplot(data = cbind(as.data.frame(t(dataList@transformedData$dc$data)), 
      ccPhase = dataList@cellInfo$ccPhase)) + theme_gray(base_size = plotParameters$plotLabelTextSize) + 
      theme(text = element_text(family = plotParameters$fontFamily, 
        size = plotParameters$fontSize), axis.text = element_text(family = plotParameters$fontFamily, 
        size = plotParameters$fontSize - 1), axis.title = element_text(family = plotParameters$fontFamily, 
        size = plotParameters$fontSize), legend.text = element_text(family = plotParameters$fontFamily, 
        size = plotParameters$fontSize - 1), legend.title = element_text(family = plotParameters$fontFamily, 
        size = plotParameters$fontSize)) + geom_point(aes(x = DC1, 
      y = DC2, color = ccPhase), size = plotParameters$plotDotSize * 
      5) + coord_cartesian(xlim = c(-plotBoundary, plotBoundary), 
      ylim = c(-plotBoundary, plotBoundary)) + scale_color_manual(values = plotParameters$colorPaletteCellCyclePhasesGeneral, 
      labels = levels(dataList@cellInfo$ccPhase)) + theme(legend.position = "right", 
      axis.text.y = element_text(angle = 90, hjust = 0.5), 
      legend.title = element_blank(), aspect.ratio = 1) + 
      guides(color = guide_legend(override.aes = list(size = 1)))
    grid.arrange(plotDC1DC2)
  }
  return(dataList)
}
cell_cycle = data.frame(phase = factor(c("G1", "S", "G2", "M"), levels = c("G1", "S", "G2", "M")),
                           hour = c(11, 8, 4, 1))
color = c("#66C2A5", "#FC8D62", "#8DA0CB", "#E78AC3")
circos.par(start.degree = 90)
circos.initialize(cell_cycle$phase, xlim = cbind(rep(0, 4), cell_cycle$hour))
circos.track(ylim = c(0, 1), panel.fun = function(x, y) {
  circos.arrow(CELL_META$xlim[1], CELL_META$xlim[2], 
               arrow.head.width = CELL_META$yrange*0.8, arrow.head.length = cm_x(0.5),
               col = color[CELL_META$sector.numeric.index])
  circos.text(CELL_META$xcenter, CELL_META$ycenter, CELL_META$sector.index, 
              facing = "downward")
  circos.axis(h = 1, major.at = seq(0, round(CELL_META$xlim[2])), minor.ticks = 1,
              labels.cex = 0.6)
}, bg.border = NA, track.height = 0.3)

https://github.com/tinglab/reCAT
https://github.com/danielschw188/Revelio
http://bioconductor.org/books/release/OSCA/trajectory-analysis.html
https://jokergoo.github.io/circlize_book/book/graphics.html
Circular Trajectory Reconstruction Uncovers Cell‐Cycle Progression and Regulatory Dynamics from Single‐Cell Hi‐C Maps
Single-Cell RNA Sequencing Maps Endothelial Metabolic Plasticity in Pathological Angiogenesis
Latent periodic process inference from single-cell RNA-seq data
The transcriptome dynamics of single cells during the cell cycle

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容