一:图片格式之间的转换
base64--->Pillow.Image
从base64得到的图片是一个字符串,前缀为'data:application/octet-stream;base64,'因此首先要去掉前缀。然后直接使用image.open方式读取
image_b64 =re.compile(r'^data:application\/octet-stream;base64,(.*)')().search(str)[1]
image_pil = Image.open(io.BytesIO(image_b64))
base64--->np.array的一维数组格式
image_b64 =re.compile(r'^data:application\/octet-stream;base64,(.*)')().search(str)[1]
image_1d = np.fromstring(image_str, np.uint8)
np.array1D---->np.array3D :Opencv需要的三维数组格式
#正常情况下,彩色图片会变成三维
image_3d = cv2.imdecode(image_1d, cv2.COLOR_BGR2RGB) # 转换Opencv格式
# 如果图片是灰度图片,那么通过上面的转换得到的依旧是一个二维的数组,如果后续模型需要强制转为三维的,则通过下面的方式进行扩张
if len(image_3d.shape) == 2:
tmp_image = np.expand_dims(image_3d, axis=2)
image_3d = np.concatenate((tmp_image, tmp_image, tmp_image), axis=-1)
np.array3D------>pillow.Image
image_pil = Image.fromarray(image_3d)
Pillow.Image----->np.array3D
image_3d = np.array(image_pil)
二、图像传输
图像传输需要通过encode的方式传递给服务器端
import base64
def b64_content(img_path):
with open(img_path, 'rb') as f:
content = f.read()
b64_content = base64.urlsafe_b64encode(content)
return b64_content.decode()
request_query = ""
url = "http://{}{}?{}".format(host, request_path, request_query)
payload = {'data': [b64_content(path)]}
request = requests.Request('POST', url, data=json.dumps(payload))
服务器端在接受到请求之后,通过decode方式读取image_b64
import base64
def post():
j = ujson.loads(self.request.body)
images_b64=[]
if isinstance(j['data'], list):
for i, d in enumerate(j['data']):
image_b64 = base64.urlsafe_b64decode(b64_str)
images_b64.append(image_b64)
三、图像格式的判断
在得到base64图像,去掉前缀之后,使用fleep包可以查看
import fleep
def validate_format(file, mime_matches):
file_info = fleep.get(file[:128])
for mime in mime_matches:
if self.file_info.mime_matches(mime):
return True
return False
is_jpeg_png = validate_format(image_b64,["image/jpeg", "image/png"])