亚尔勃斯投影经纬度(\phi,\lambda)为屏幕坐标(x,y)的数学公式:
x = \rho \sin \theta,\quad y = \rho_{0} - \rho\cos\theta
其中,
n = \frac{1}{2}(\sin{\phi_{1}}-\sin{\phi_{2}}), \theta = n(\lambda-\lambda_{0})
C = \cos^{2}{\phi_{1}}+2n\sin{\phi_{2}}
\rho = \frac{R}{n}\sqrt{C-2n\sin\phi}
\rho_{0} = \frac{R}{n}\sqrt{C-2n\sin{\phi_{0}}}
公式中\lambda_{0}为基准的中央经线,\phi_{0}为起始纬度。\phi_{1}和\phi_{2}分别为第一和第二标准纬线。R为地球半径。
圆锥曲面(极坐标系下)第一基本形式为:
(ds)^{2}_{M}=(d\rho)^{2}+\rho^{2}(d\theta)^{2}=E'(d\rho)^{2}+G'(d\theta)^{2}
地球球面的第一基本形式为:
(ds)^{2}_{E}=R^{2}(d\phi)^{2}+R^{2}\cos^{2}{\phi}(d\lambda)^{2} = e(d\phi)^{2}+g(d\lambda)^{2}
微分得到:
d\theta = nd\lambda,\quad d\rho = \frac{-R\cos\phi}{\sqrt{C-2n\sin\phi}}
带入得到:
(ds)^{2}_M = \frac{R^{2}\cos^{2}\phi }{C-2n\sin\phi}(d\phi)^{2}+\rho^{2}n^{2}(d\lambda)^{2} =E(d\phi)^{2}+G(d\lambda)^{2}
面积畸变定义为地图面积A_M = \sqrt{EG}与球面面积A_M = \sqrt{eg}之比
K_{A} = \frac{A_M}{A_E}=\sqrt{\frac{EG}{eg}}
于是
K_{A} = \frac{\cos\phi}{\sqrt{C-2n\sin\phi}} \cdot \frac{\sqrt{C-2n\sin\phi}}{\cos\phi} = 1
因此亚尔勃斯投影为等面积投影
本文亦有参考:ref