一、简介
为了提高爬虫程序效率,由于python解释器GIL,导致同一进程中即使有多个线程,实际上也只会有一个线程在运行,但通过request.get发送请求获取响应时有阻塞,所以采用了多线程依然可以提高爬虫效率。
多线程爬虫注意点
1.解耦
整个程序分为4部分,url list模块、发送请求,获取响应模块、数据提取模块、保存模块,如果某一模块出现问题,互相之间不会影响。
2. 资源竞争
由于使用了多线程,不同线程在共享数据时,容易产生资源竞争,假设共享数据放入列表中,那么同一时刻有可能2个线程去列表中取同一个数据,重复使用。解决办法是使用队列,使得某一线程get数据时,其他线程无法get同一数据,真正起到保护作用,类似互斥锁。
队列常用方法介绍
from queue import Queue
q = Queue()
q.put(url)
q.get() # 当队列为空时,阻塞
q.empty() # 判断队列是否为空,True/False
注意:
- get和get_nowait两者的区别是当队列取完了即队列为空时,get()会阻塞,等待着新数据继续取,而get_nowait()会报错;
- put和put_nowait 两者的区别是当队列为满时,put_nowait()会报错;
队列其他方法join task_done setDaemon
- 在python3中,join()会等待子线程、子进程结束之后,主线程、主进程才会结束.
- 队列中put队列计数会+1,get时计数不会减1,但当get+task_done时,队列计数才会减1,如果没有task_done则程序跑到最后不会终止。task_done()的位置,应该放在方法的最后以保证所有任务全部完成.
- setDaemon方法把子线程设置为守护线程,即认为该方法不是很重要,记住主线程结束,则该子线程结束
- join方法和setDaemon方法搭配使用。主线程进行到join()处,join的效果是让主线程阻塞,等待子线程中队列任务完成之后再解阻塞,等子线程结束,join效果失效,之后主线程结束,由于使用了setDaemon(True),所以子线程跟着结束,此时整个程序结束。
线程模块
from threading import Thread
# 使用流程
t = Thread(target=函数名) # 创建线程对象
t.start() # 创建并启动线程
t.join() # 阻塞等待回收线程
应用场景
- 多进程 :CPU密集程序
- 多线程 :爬虫(网络I/O)、本地磁盘I/O
二、案例
1. 小米应用商店抓取
目标
- 网址 :百度搜 - 小米应用商店,进入官网,应用分类 - 聊天社交
- 目标 :爬取应用名称和应用链接
实现步骤
1、确认是否为动态加载:页面局部刷新,查看网页源代码,搜索关键字未搜到,因此此网站为动态加载网站,需要抓取网络数据包分析
2、抓取网络数据包
- 抓取返回json数据的URL地址(Headers中的Request URL)http://app.mi.com/categotyAllListApi?page={}&categoryId=2&pageSize=30
- 查看并分析查询参数(headers中的Query String Parameters)只有page在变,0 1 2 3 ... ... ,这样我们就可以通过控制page的值拼接多个返回json数据的URL地址
page: 1
categoryId: 2
pageSize: 30
3、将抓取数据保存到csv文件。注意多线程写入的线程锁问题
lock = Lock()
lock.acquire()
lock.release()
整体实现思路
- 在 init(self) 中创建文件对象,多线程操作此对象进行文件写入;
- 每个线程抓取数据后将数据进行文件写入,写入文件时需要加锁;
- 所有数据抓取完成关闭文件;
import requests
from threading import Thread
from queue import Queue
import time
from lxml import etree
import csv
from threading import Lock
class XiaomiSpider(object):
def __init__(self):
self.url = 'http://app.mi.com/categotyAllListApi?page={}&categoryId={}&pageSize=30'
self.ua = {'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.163 Safari/535.1'}
self.q = Queue() # 存放所有URL地址的队列
self.i = 0
self.id_list = [] # 存放所有类型id的空列表
# 打开文件
self.f = open('xiaomi.csv', 'a', newline="")
self.writer = csv.writer(self.f)
self.lock = Lock() # 创建锁
def get_cateid(self):
url = 'http://app.mi.com/'
html = requests.get(url=url, headers=self.ua).text
parse_html = etree.HTML(html)
li_list = parse_html.xpath('//ul[@class="category-list"]/li')
for li in li_list:
typ_name = li.xpath('./a/text()')[0]
typ_id = li.xpath('./a/@href')[0].split('/')[-1]
pages = self.get_pages(typ_id) # 计算每个类型的页数
self.id_list.append((typ_id, pages))
self.url_in() # 入队列
def get_pages(self, typ_id):
# 每页返回的json数据中,都有count这个key
url = self.url.format(0, typ_id)
html = requests.get(url=url, headers=self.ua).json()
count = html['count'] # 类别中的数据总数
pages = int(count) // 30 + 1 # 每页30个,看有多少页
return pages
# url入队列
def url_in(self):
for id in self.id_list:
# id为元组,(typ_id, pages)-->('2',pages)
for page in range(2):
url = self.url.format(page, id[0])
print(url)
# 把URL地址入队列
self.q.put(url)
# 线程事件函数: get() - 请求 - 解析 - 处理数据
def get_data(self):
while True:
# 当队列不为空时,获取url地址
if not self.q.empty():
url = self.q.get()
html = requests.get(url=url, headers=self.ua).json()
self.parse_html(html)
else:
break
# 解析函数
def parse_html(self, html):
# 存放1页的数据 - 写入到csv文件
app_list = []
for app in html['data']:
# 应用名称 + 链接 + 分类
name = app['displayName']
link = 'http://app.mi.com/details?id=' + app['packageName']
typ_name = app['level1CategoryName']
# 把每一条数据放到app_list中,目的为了 writerows()
app_list.append([name, typ_name, link])
print(name, typ_name)
self.i += 1
# 开始写入1页数据 - app_list
self.lock.acquire()
self.writer.writerows(app_list)
self.lock.release()
# 主函数
def main(self):
self.get_cateid() # URL入队列
t_list = []
# 创建多个线程
for i in range(1):
t = Thread(target=self.get_data)
t_list.append(t)
t.start()
# 统一回收线程
for t in t_list:
t.join()
# 关闭文件
self.f.close()
print('数量:', self.i)
if __name__ == '__main__':
start = time.time()
spider = XiaomiSpider()
spider.main()
end = time.time()
print('执行时间:%.2f' % (end - start))
2.腾讯招聘数据抓取(Ajax)
确定URL地址及目标
- URL: 百度搜索腾讯招聘 - 查看工作岗位https://careers.tencent.com/search.html
- 目标: 职位名称、工作职责、岗位要求
要求与分析
- 通过查看网页源码,得知所需数据均为 Ajax 动态加载
- 通过F12抓取网络数据包,进行分析
- 一级页面抓取数据: 职位名称
- 二级页面抓取数据: 工作职责、岗位要求
一级页面json地址(pageIndex在变,timestamp未检查)
https://careers.tencent.com/tencentcareer/api/post/Query?timestamp=1563912271089&countryId=&cityId=&bgIds=&productId=&categoryId=&parentCategoryId=&attrId=&keyword=&pageIndex={}&pageSize=10&language=zh-cn&area=cn
二级页面地址(postId在变,在一级页面中可拿到)
https://careers.tencent.com/tencentcareer/api/post/ByPostId?timestamp=1563912374645&postId={}&language=zh-cn
useragents.py文件
ua_list = [
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.835.163 Safari/535.1',
'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:6.0) Gecko/20100101 Firefox/6.0',
'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; InfoPath.3)',
]
非多线程爬取
import time
import json
import random
import requests
from useragents import ua_list
class TencentSpider(object):
def __init__(self):
self.one_url = 'https://careers.tencent.com/tencentcareer/api/post/Query?timestamp=1563912271089&countryId=&cityId=&bgIds=&productId=&categoryId=&parentCategoryId=&attrId=&keyword=&pageIndex={}&pageSize=10&language=zh-cn&area=cn'
self.two_url = 'https://careers.tencent.com/tencentcareer/api/post/ByPostId?timestamp=1563912374645&postId={}&language=zh-cn'
self.f = open('tencent.json', 'a') # 打开文件
self.item_list = [] # 存放抓取的item字典数据
# 获取响应内容函数
def get_page(self, url):
headers = {'User-Agent': random.choice(ua_list)}
html = requests.get(url=url, headers=headers).text
html = json.loads(html) # json格式字符串转为Python数据类型
return html
# 主线函数: 获取所有数据
def parse_page(self, one_url):
html = self.get_page(one_url)
item = {}
for job in html['Data']['Posts']:
item['name'] = job['RecruitPostName'] # 名称
post_id = job['PostId'] # postId,拿postid为了拼接二级页面地址
# 拼接二级地址,获取职责和要求
two_url = self.two_url.format(post_id)
item['duty'], item['require'] = self.parse_two_page(two_url)
print(item)
self.item_list.append(item) # 添加到大列表中
# 解析二级页面函数
def parse_two_page(self, two_url):
html = self.get_page(two_url)
duty = html['Data']['Responsibility'] # 工作责任
duty = duty.replace('\r\n', '').replace('\n', '') # 去掉换行
require = html['Data']['Requirement'] # 工作要求
require = require.replace('\r\n', '').replace('\n', '') # 去掉换行
return duty, require
# 获取总页数
def get_numbers(self):
url = self.one_url.format(1)
html = self.get_page(url)
numbers = int(html['Data']['Count']) // 10 + 1 # 每页有10个推荐
return numbers
def main(self):
number = self.get_numbers()
for page in range(1, 3):
one_url = self.one_url.format(page)
self.parse_page(one_url)
# 保存到本地json文件:json.dump
json.dump(self.item_list, self.f, ensure_ascii=False)
self.f.close()
if __name__ == '__main__':
start = time.time()
spider = TencentSpider()
spider.main()
end = time.time()
print('执行时间:%.2f' % (end - start))
多线程爬取
多线程即把所有一级页面链接提交到队列,进行多线程数据抓取
import requests
import json
import time
import random
from useragents import ua_list
from threading import Thread
from queue import Queue
class TencentSpider(object):
def __init__(self):
self.one_url = 'https://careers.tencent.com/tencentcareer/api/post/Query?timestamp=1563912271089&countryId=&cityId=&bgIds=&productId=&categoryId=&parentCategoryId=&attrId=&keyword=&pageIndex={}&pageSize=10&language=zh-cn&area=cn'
self.two_url = 'https://careers.tencent.com/tencentcareer/api/post/ByPostId?timestamp=1563912374645&postId={}&language=zh-cn'
self.q = Queue()
self.i = 0 # 计数
# 获取响应内容函数
def get_page(self, url):
headers = {'User-Agent': random.choice(ua_list)}
html = requests.get(url=url, headers=headers).text
# json.loads()把json格式的字符串转为python数据类型
html = json.loads(html)
return html
# 主线函数: 获取所有数据
def parse_page(self):
while True:
if not self.q.empty():
one_url = self.q.get()
html = self.get_page(one_url)
item = {}
for job in html['Data']['Posts']:
item['name'] = job['RecruitPostName'] # 名称
post_id = job['PostId'] # 拿postid为了拼接二级页面地址
# 拼接二级地址,获取职责和要求
two_url = self.two_url.format(post_id)
item['duty'], item['require'] = self.parse_two_page(two_url)
print(item)
# 每爬取按完成1页随机休眠
time.sleep(random.uniform(0, 1))
else:
break
# 解析二级页面函数
def parse_two_page(self, two_url):
html = self.get_page(two_url)
# 用replace处理一下特殊字符
duty = html['Data']['Responsibility']
duty = duty.replace('\r\n', '').replace('\n', '')
# 处理要求
require = html['Data']['Requirement']
require = require.replace('\r\n', '').replace('\n', '')
return duty, require
# 获取总页数
def get_numbers(self):
url = self.one_url.format(1)
html = self.get_page(url)
numbers = int(html['Data']['Count']) // 10 + 1
return numbers
def main(self):
# one_url入队列
number = self.get_numbers()
for page in range(1, number + 1):
one_url = self.one_url.format(page)
self.q.put(one_url)
t_list = []
for i in range(5):
t = Thread(target=self.parse_page)
t_list.append(t)
t.start()
for t in t_list:
t.join()
print('数量:', self.i)
if __name__ == '__main__':
start = time.time()
spider = TencentSpider()
spider.main()
end = time.time()
print('执行时间:%.2f' % (end - start))
多进程实现
import requests
import json
import time
import random
from useragents import ua_list
from multiprocessing import Process
from queue import Queue
class TencentSpider(object):
def __init__(self):
self.one_url = 'https://careers.tencent.com/tencentcareer/api/post/Query?timestamp=1563912271089&countryId=&cityId=&bgIds=&productId=&categoryId=&parentCategoryId=&attrId=&keyword=&pageIndex={}&pageSize=10&language=zh-cn&area=cn'
self.two_url = 'https://careers.tencent.com/tencentcareer/api/post/ByPostId?timestamp=1563912374645&postId={}&language=zh-cn'
self.q = Queue()
# 获取响应内容函数
def get_page(self, url):
headers = {'User-Agent': random.choice(ua_list)}
html = requests.get(url=url, headers=headers).text
# json格式字符串 -> Python
html = json.loads(html)
return html
# 主线函数: 获取所有数据
def parse_page(self):
while True:
if not self.q.empty():
one_url = self.q.get()
html = self.get_page(one_url)
item = {}
for job in html['Data']['Posts']:
# 名称
item['name'] = job['RecruitPostName']
# postId
post_id = job['PostId']
# 拼接二级地址,获取职责和要求
two_url = self.two_url.format(post_id)
item['duty'], item['require'] = self.parse_two_page(two_url)
print(item)
else:
break
# 解析二级页面函数
def parse_two_page(self, two_url):
html = self.get_page(two_url)
# 用replace处理一下特殊字符
duty = html['Data']['Responsibility']
duty = duty.replace('\r\n', '').replace('\n', '')
# 处理要求
require = html['Data']['Requirement']
require = require.replace('\r\n', '').replace('\n', '')
return duty, require
# 获取总页数
def get_numbers(self):
url = self.one_url.format(1)
html = self.get_page(url)
numbers = int(html['Data']['Count']) // 10 + 1
return numbers
def main(self):
# url入队列
number = self.get_numbers()
for page in range(1, number + 1):
one_url = self.one_url.format(page)
self.q.put(one_url)
t_list = []
for i in range(4):
t = Process(target=self.parse_page)
t_list.append(t)
t.start()
for t in t_list:
t.join()
if __name__ == '__main__':
start = time.time()
spider = TencentSpider()
spider.main()
end = time.time()
print('执行时间:%.2f' % (end - start))
基于multiprocessing.dummy线程池的数据爬取
案例:爬取梨视频数据。在爬取和持久化存储方面比较耗时,所以两个都需要多线程
import requests
import re
from lxml import etree
from multiprocessing.dummy import Pool
import random
pool = Pool(5) # 实例化一个线程池对象
url = 'https://www.pearvideo.com/category_1'
headers = {
'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.119 Safari/537.36'
}
page_text = requests.get(url=url,headers=headers).text
tree = etree.HTML(page_text)
li_list = tree.xpath('//div[@id="listvideoList"]/ul/li')
video_url_list = []
for li in li_list:
detail_url = 'https://www.pearvideo.com/'+li.xpath('./div/a/@href')[0]
detail_page = requests.get(url=detail_url,headers=headers).text
video_url = re.findall('srcUrl="(.*?)",vdoUrl',detail_page,re.S)[0]
video_url_list.append(video_url)
# pool.map(回调函数,可迭代对象)函数依次执行对象
video_data_list = pool.map(getVideoData,video_url_list) # 获取视频
pool.map(saveVideo,video_data_list) # 持久化存储
def getVideoData(url):
return requests.get(url=url,headers=headers).content
def saveVideo(data):
fileName = str(random.randint(0,5000))+'.mp4' # 因回调函数只能传一个参数,所以没办法再传名字了,只能自己取名
with open(fileName,'wb') as fp:
fp.write(data)
pool.close()
pool.join()