numpy函数详解

Indexing

  • API
  • 待梳理

np.random.uniform(low=0.0, high=1.0, size=None)

  • 得到随机均匀分布的tuple
  • 区间是左闭右开[low,high),size可以是10,[2,3],[2,2,3]等。
np.random.uniform(-1,1,[2,3])
np.random.uniform(-1,1,10)

np.linalg.norm(x, ord=None, axis=None, keepdims=False)

  • 在只考虑前两个参数,后两个默认的情况下,该函数求x的范数
np.linalg.norm([1,2,3,4,5],ord=1)
10 #一范数
np.linalg.norm([1,2,3,4,5],ord=2)
5.4772255750516612 #二范数

np.random.choice(a, size=None,replace=True,p=None)

  • API
  • a代表选择范围
  • size代表选择的个数
  • replace代表是否有重复(true代表有重复,false代表无重复) ,默认为true,即有放回
  • p代表a中每一个元素被选中的概率,不填代表uniform
    举例:
np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
#从[0,5)中选择3个,(0,1,2,3,4)被选中的概率分别为(0.1,0,0.3,0.6,0),没有重复(无放回)

array([3,1,0])
#从特定集合中抽样
aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])

array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'],
      dtype='|S11')

np.roll(a,shift,axis=None)

np.random.randint(low,high=None,size=None,dtype='l')

  • 生成一个整数tuple,size可指定,例如[2,4]。
  • 数的范围为[low,high)。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容

  • Numpy的组成与功能 Numpy(Numeric Python)可以被理解为一个用python实现的科学计算包,...
    不做大哥好多年阅读 4,280评论 0 10
  • TF API数学计算tf...... :math(1)刚开始先给一个运行实例。tf是基于图(Graph)的计算系统...
    MachineLP阅读 3,456评论 0 1
  • 每一次特别累的时候都会想起这部电影。 一个跨国快递公司的创始人,流落到荒岛上,却从未放弃过想要回去正常社会。 其中...
    思绪的速度阅读 443评论 0 0
  • 跟好友在街头游荡,偶然看到三五个帅小伙,全身攒动,伴随着音乐的节奏,贪吃蛇一般柔软地扭动着身体,舞蹈给人感觉:飒爽...
    蛋公主阅读 280评论 1 1