矩阵上的卷积操作非常简单。根据mask矩阵(也称为内核)重新计算图像中的每个像素值。该mask保存将调整相邻像素(和当前像素)对新像素值有多大影响的值。从数学的角度来看,我们用加权平均值与我们指定的值进行比较。
测试用例
考虑一个图像对比度增强方法的问题。基本上我们要为图像的每个像素应用以下公式:
Code
#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
using namespace std;
using namespace cv;
static void help(char* progName)
{
cout << endl
<< "This program shows how to filter images with mask: the write it yourself and the"
<< "filter2d way. " << endl
<< "Usage:" << endl
<< progName << " [image_path -- default ../data/lena.jpg] [G -- grayscale] " << endl << endl;
}
void Sharpen(const Mat& myImage, Mat& Result);
int main(int argc, char* argv[])
{
help(argv[0]);
const char* filename = argc >= 2 ? argv[1] : "lena.bmp";
Mat src, dst0, dst1;
if (argc >= 3 && !strcmp("G", argv[2]))
src = imread(filename, IMREAD_GRAYSCALE);
else
src = imread(filename, IMREAD_COLOR);
if (src.empty())
{
cerr << "Can't open image [" << filename << "]" << endl;
return -1;
}
namedWindow("Input", WINDOW_AUTOSIZE);
namedWindow("Output", WINDOW_AUTOSIZE);
imshow("Input", src);
double t = (double)getTickCount();
Sharpen(src, dst0);
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "Hand written function time passed in seconds: " << t << endl;
imshow("Output", dst0);
waitKey();
Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);
t = (double)getTickCount();
filter2D(src, dst1, src.depth(), kernel);
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "Built-in filter2D time passed in seconds: " << t << endl;
imshow("Output", dst1);
waitKey();
return 0;
}
void Sharpen(const Mat& myImage, Mat& Result)
{
CV_Assert(myImage.depth() == CV_8U); // accept only uchar images
const int nChannels = myImage.channels();
Result.create(myImage.size(), myImage.type());
for (int j = 1; j < myImage.rows - 1; ++j)
{
const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j);
const uchar* next = myImage.ptr<uchar>(j + 1);
uchar* output = Result.ptr<uchar>(j);
for (int i = nChannels; i < nChannels*(myImage.cols - 1); ++i)
{
*output++ = saturate_cast<uchar>(5 * current[i]
- current[i - nChannels] - current[i + nChannels] - previous[i] - next[i]);
}
}
Result.row(0).setTo(Scalar(0));
Result.row(Result.rows - 1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols - 1).setTo(Scalar(0));
}
视频链接: YouTube channel