基于图像矩阵的mask(kernel)卷积操作

矩阵上的卷积操作非常简单。根据mask矩阵(也称为内核)重新计算图像中的每个像素值。该mask保存将调整相邻像素(和当前像素)对新像素值有多大影响的值。从数学的角度来看,我们用加权平均值与我们指定的值进行比较。

测试用例

考虑一个图像对比度增强方法的问题。基本上我们要为图像的每个像素应用以下公式:


mask

Code

#include <opencv2/imgcodecs.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>

using namespace std;
using namespace cv;

static void help(char* progName)
{
    cout << endl
        << "This program shows how to filter images with mask: the write it yourself and the"
        << "filter2d way. " << endl
        << "Usage:" << endl
        << progName << " [image_path -- default ../data/lena.jpg] [G -- grayscale] " << endl << endl;
}

void Sharpen(const Mat& myImage, Mat& Result);

int main(int argc, char* argv[])
{
    help(argv[0]);
    const char* filename = argc >= 2 ? argv[1] : "lena.bmp";

    Mat src, dst0, dst1;

    if (argc >= 3 && !strcmp("G", argv[2]))
        src = imread(filename, IMREAD_GRAYSCALE);
    else
        src = imread(filename, IMREAD_COLOR);

    if (src.empty())
    {
        cerr << "Can't open image [" << filename << "]" << endl;
        return -1;
    }

    namedWindow("Input", WINDOW_AUTOSIZE);
    namedWindow("Output", WINDOW_AUTOSIZE);
    imshow("Input", src);

    double t = (double)getTickCount();

    Sharpen(src, dst0);

    t = ((double)getTickCount() - t) / getTickFrequency();
    cout << "Hand written function time passed in seconds: " << t << endl;
    imshow("Output", dst0);
    waitKey();

    Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0,
        -1, 5, -1,
        0, -1, 0);

    t = (double)getTickCount();
    filter2D(src, dst1, src.depth(), kernel);
    t = ((double)getTickCount() - t) / getTickFrequency();

    cout << "Built-in filter2D time passed in seconds:     " << t << endl;
    imshow("Output", dst1);
    waitKey();
    return 0;
}


void Sharpen(const Mat& myImage, Mat& Result)
{
    CV_Assert(myImage.depth() == CV_8U);  // accept only uchar images
    const int nChannels = myImage.channels();
    Result.create(myImage.size(), myImage.type());
    for (int j = 1; j < myImage.rows - 1; ++j)
    {
        const uchar* previous = myImage.ptr<uchar>(j - 1);
        const uchar* current = myImage.ptr<uchar>(j);
        const uchar* next = myImage.ptr<uchar>(j + 1);

        uchar* output = Result.ptr<uchar>(j);

        for (int i = nChannels; i < nChannels*(myImage.cols - 1); ++i)
        {
            *output++ = saturate_cast<uchar>(5 * current[i]
                - current[i - nChannels] - current[i + nChannels] - previous[i] - next[i]);
        }
    }

    Result.row(0).setTo(Scalar(0));
    Result.row(Result.rows - 1).setTo(Scalar(0));

    Result.col(0).setTo(Scalar(0));
    Result.col(Result.cols - 1).setTo(Scalar(0));
}

视频链接: YouTube channel

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,542评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,596评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,021评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,682评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,792评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,985评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,107评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,845评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,299评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,612评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,747评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,441评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,072评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,828评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,069评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,545评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,658评论 2 350

推荐阅读更多精彩内容

  • 不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘...
    大川无敌阅读 13,836评论 0 29
  • 参考资料: 图像卷积与滤波的一些知识点 图像处理基本概念——卷积,滤波,平滑 1.卷积的基本概念 首先,我们有一个...
    keloli阅读 10,001评论 0 26
  • 最新刚好遇到个需求是要求做高斯模糊的,虽然现有已经有一些框架可以提供调用,但关键还是要理解原理才行,思考的过程才是...
    Hohohong阅读 13,555评论 1 37
  • 这些年计算机视觉识别和搜索这个领域非常热闹,后期出现了很多的创业公司,大公司也在这方面也花了很多力气在做。做视觉搜...
    方弟阅读 6,466评论 6 24
  • 李笑来老师讲的人生作弊神器是学习,高! 我是从法律专科毕业,本科自学了好多年才完成山东大学的法学本科毕业。拿...
    孙绪平阅读 2,511评论 7 5