图像数据通道格式:NCHW和NHWC的区别

在深度学习中,图像数据通道格式有两种:

  • NCHW,又称:“channels_first”,是nvidia cudnn库原生支持的数据模式;在GPU中,使用NCHW格式计算卷积,比NHWC要快2.5倍左右(0:54 vs 2:14)
    GPU中NCHW比NHWC卷积计算速度快
  • NHWC, 又称“channels_last”,是CPU指令比较适合的方式,SSE 或 AVX优化,沿着最后一维,即C维计算,会更快。
  • NCHW排列,C在外层,所以每个通道内,像素紧挨在一起,即“RRRGGGBBB”;NHWC排列,C在最内层,所以每个通道内,像素间隔挨在一起,即“RGBRGBRGB”,如下所示:
    NCHW和NHWC在内存中的排布
  • 尽管存储的数据实际上是一样的,但是不同的顺序会导致数据的访问特性不一致,因此即使进行同样的运算,相应的计算性能也会不一样。对于"NCHW" 而言,其同一个通道的像素值连续排布,更适合那些需要对每个通道单独做运算的操作,比如"MaxPooling"。对于"NHWC"而言,其不同通道中的同一位置元素顺序存储,因此更适合那些需要对不同通道的同一像素做某种运算的操作,比如“Conv1x1”
    NCHW和NHWC计算区别
  • 由于NCHW,需要把所有通道的数据都读取到,才能运算,所以在计算时需要的存储更多。这个特性适合GPU运算,正好利用了GPU内存带宽较大并且并行性强的特点,其访存与计算的控制逻辑相对简单;而NHWC,每读取三个像素,都能获得一个彩色像素的值,即可对该彩色像素进行计算,这更适合多核CPU运算,CPU的内存带宽相对较小,每个像素计算的时延较低,临时空间也很小;若采取异步方式边读边算来减小访存时间,计算控制会比较复杂,这也比较适合CPU。
    结论:在训练模型时,使用GPU,适合NCHW格式;在CPU中做推理时,适合NHWC格式。采用什么格式排列,由计算硬件的特点决定。OpenCV在设计时是在CPU上运算的,所以默认HWC格式。TensorFlow的默认格式是NHWC,也支持cuDNN的NCHW
import cv2
import matplotlib.pyplot as plt
import numpy as np
img = cv2.imread("data/images/bus.jpg")
img = cv2.resize(img, (5,4)) #(x, y) -> (W, H)
print(img.shape) # (H,W,C)
plt.figure()
plt.imshow(img)
plt.show()
line1 = img[1,...]
line1 = np.expand_dims(line1, axis=0)
print(line1.shape)
print(line1)
plt.figure()
plt.imshow(line1)
plt.show()
print("BGR->RGB")
rgb_line1 = cv2.cvtColor(line1, cv2.COLOR_BGR2RGB)
print(rgb_line1.shape)
print(rgb_line1)
print()
print("HWC->CHW")
CHW_line1 = np.transpose(line1, (2,0,1))
print(CHW_line1.shape)
print(CHW_line1)

运行结果如下:
img.shape and imshow(img)
print(line1.shape) & print(line1)

BGR->RGB & HWC->CHW
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容