研究生论文中常用的大数据回归分析具体方法

上次明明同学给大家分享的研究生让你paper发发发的几种数据方法,得到大家的广泛关注和好评,这里明明同学谢谢大家对“毕业零距离”的支持。其中的数据方差分析方法明明同学已经给大家分享过,今天明明同学给大家分享回归分析的R语言分析方法。

本文主要介绍以下内容:

• R语言中线性模型lm函数公式及参数

• 一元线性回归实现与检验过程讲解lm()函数

• R语言中广义线性模型glm()函数

R语言中线性回归方程拟合函数lm()

Lm()是R语言中拟合线性回归函数。官方文档对他的用法解释是这样的:

官方文档参数比较多,明明同学感觉没有必要研究那么多,这里明明同学讲解最常用的方法即:

lm(formula, data)

formula:表示你要拟合的公式,一般有以下几种

公式中特殊符号表达的含义为:

Data:你要拟合的数据集

下面明明同学以一元线性的例子为大家介绍如何使用R语言做回归分析(本部分数据为UsingR包里面的父亲身高和儿子身高数据)。

一元线性回归

这是最简单的回归形式,用于确定两个变量之间的关系。也就是说,给定一个变量,回归告诉我另外一个变量的期望值是多少。分析中所形成的这种关系称为回归模型,其中以一条直线方程表明两个变量依存关系的模型叫做一元线性模型也称为简单的线性回归。其主要步骤包括:建立回归模型、求解回归模型中的参数、对回归模型进行检验。

UsingR包里面的父亲身高和儿子身高数据(单位英尺)

用ggplot2包的ggplot函数做散点图查看数据大致趋势


从图中可以看出数字大致成直线分布,此时用ggplot2包中的geom_smooth(method=”lm”)为图形添加线性回归直线查看直线位置和走势。

到此我们把回归模型的图做出来了,但是这个图并没有把结果提供给我们,所以我们在R语言中用lm()函数来实际计算回归方程。过程如下图

从图结果中红色框框可以看出拟合的模型截距项为33.886,fheight的系数为0.51409。所以拟合的方程结果为sheight = 0.51409fheight + 33.886 。从结果中还可以看出R2为0.2513,F检验值为361.2自由度为(1,1076),系数P检验值和模型P检验值都小于0.05,于是在α=0.05水平处拒绝H0,接受H1,即本例回归系数有统计学意义,两个变量之间有显著的回归关系。

使用plot(模型拟合结果)查看模型拟合图

Q-Q图

正态性当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布。正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值下,标准化残差的概率图。若满足正态假设,那么图上的点应该落在呈45度角的直线上;若不是如此,那么就违反了正态性的假设。

残差图与拟合图

变量之间线性是否好,在“残差图与拟合图”( Residuals vs Fitted)中如果是一条直线说明变量之间线性关系很好。

位置尺度图

同方差性若满足不变方差假设,那么在位置尺度图(Scale-Location Graph)中,水平线周围的点应该随机分布

库克距离

R语言中广义线性模型glm()函数

广义线性模型

现实生活中并非所有的数据都适合用线性回归模型,像二项分布(真/假)数据、计数数据或者其他的数据形式都不适合。为了模拟这些类型的数据、发展了广义线性模型。

广义线性模型glm():

glm(formula , family=gaussian , data,…)

formula:的写法可以参考lm()函数,公式写法是一样的。

Family 为分布族,包括正态分布(gaussian)、二项分布(binomial)、泊松分布(poisson)和伽马分布(gamma),分布族还可以通过选项Link = 来指定使用的链接函数。

常用的链接函数:

二项族里有logit 、probit 、 cauchit 、 log 、 cloglog ;伽马族有inverse、identify、log;泊松族有log、identify、和sqrt。

Data 是数据框

实例:

我们对45名驾驶员调查结果进行如下统计:

x1 : 表示视力状况,是一个分类变量,1表示好,0表示有问题;

x2 : 年龄,数值型

x3 : 驾车教育,分类变量 1表示参加过驾车教育 , 0 表示没有

y :分类变量 表示去年是否出过事故 , 1表示出过事故 , 0表示没有

我们这里考查前三个变量x1 , x2 , x3与发生事故的关系

这里用逻辑斯蒂进行回归拟合

由结果可知,x2 和 x3并没有通过检验,下一步用step()函数,逐步回归在进行变量的筛选。

看出最终只有变量x1入选模型。然后对模型就行预测,即对视力正常的和视力有问题的司机分别作预测,即预测发生交通事故的概率。

由此可见眼睛有问题的司机的交通事故率是眼睛正常的司机交通事故率的差不多两倍

下次明明同学给大家讲解如何在R语言中轻松实现判别分析

查看历史文章学习更多数据分析技巧、EXCEL和PPT使用技巧

有任何问题可以添加明明同学微信,提供数据分析业务和帮助,帮助你解决数据分析的难处。

毕业零距离致力于为本科生、研究生以及刚入职场的小伙伴提供数据分析、办公软件的方法和技巧。

明明同学已经开通数据处理、电子视频相册制作、PPT制作、照片处理等业务,欢迎大家关注。明明同学,你身边的科研小助手。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容