1. Choreograhper简介
Choreograhper作为一个中间层,负责协调动画,输入, 绘制的执行过程。将底层的如VSync信号做分发,按需传递给上层应用。
2. Choreograhper源码解析:
所有对Choreograhper的使用都是通过Choreograhper类的静态方法:
public static Choreographer getInstance() {
return sThreadInstance.get();
}
sThreadInstance是ThreadLocal类型, 因而它的get() 方法是拿到本线程的Choreographer对象:
// Thread local storage for the choreographer.
private static final ThreadLocal<Choreographer> sThreadInstance =
new ThreadLocal<Choreographer>() {
@Override
protected Choreographer initialValue() {
Looper looper = Looper.myLooper();
if (looper == null) {
throw new IllegalStateException("The current thread must have a looper!");
}
Choreographer choreographer = new Choreographer(looper, VSYNC_SOURCE_APP);
if (looper == Looper.getMainLooper()) {
mMainInstance = choreographer;
}
return choreographer;
}
};
构造函数:
private Choreographer(Looper looper, int vsyncSource) {
mLooper = looper;
mHandler = new FrameHandler(looper);
//创建接收VSync信号的FrameDisplayEventReceiver对象
mDisplayEventReceiver = USE_VSYNC
? new FrameDisplayEventReceiver(looper, vsyncSource)
: null;
mLastFrameTimeNanos = Long.MIN_VALUE;
//计算刷新的时间间隔
mFrameIntervalNanos = (long)(1000000000 / getRefreshRate());
//创建三个CallbackQueue对象
mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1];
for (int i = 0; i <= CALLBACK_LAST; i++) {
mCallbackQueues[i] = new CallbackQueue();
}
// b/68769804: For low FPS experiments.
setFPSDivisor(SystemProperties.getInt(ThreadedRenderer.DEBUG_FPS_DIVISOR, 1));
}
其中FrameDisplayEventReceiver是最重要的, 能够接收VSync信号, 继承自DisplayEventRececiver, 构造函数:
public DisplayEventReceiver(Looper looper, int vsyncSource) {
if (looper == null) {
throw new IllegalArgumentException("looper must not be null");
}
mMessageQueue = looper.getQueue();
mReceiverPtr = nativeInit(new WeakReference<DisplayEventReceiver>(this), mMessageQueue,
vsyncSource);
mCloseGuard.open("dispose");
}
nativeInit的代码:
static jlong nativeInit(JNIEnv* env, jclass clazz, jobject receiverWeak,
jobject messageQueueObj, jint vsyncSource) {
sp<MessageQueue> messageQueue = android_os_MessageQueue_getMessageQueue(env, messageQueueObj);
if (messageQueue == NULL) {
jniThrowRuntimeException(env, "MessageQueue is not initialized.");
return 0;
}
sp<NativeDisplayEventReceiver> receiver = new NativeDisplayEventReceiver(env,
receiverWeak, messageQueue, vsyncSource);
status_t status = receiver->initialize();
if (status) {
String8 message;
message.appendFormat("Failed to initialize display event receiver. status=%d", status);
jniThrowRuntimeException(env, message.string());
return 0;
}
receiver->incStrong(gDisplayEventReceiverClassInfo.clazz); // retain a reference for the object
return reinterpret_cast<jlong>(receiver.get());
}
这里新建了一个NativeDisplayEventReceiver, 然后NativeDisplayEventReceiver里又建立了一个DisplayEventReceiver对象, DisplayEventReceiver的构造函数:
DisplayEventReceiver::DisplayEventReceiver(ISurfaceComposer::VsyncSource vsyncSource) {
sp<ISurfaceComposer> sf(ComposerService::getComposerService());
if (sf != NULL) {
mEventConnection = sf->createDisplayEventConnection(vsyncSource);
if (mEventConnection != NULL) {
mDataChannel = std::make_unique<gui::BitTube>();
mEventConnection->stealReceiveChannel(mDataChannel.get());
}
}
}
DisplayEventReceiver里调用了SurfaceFlinger的createDisplayEventConnection来返回一个IDisplayEventConnection。createDisplayEventConnection正是调用了他的mEventThread变量的createEventConnection函数来得到IDisplayEventConnection的。得到IDisplayEventConnection对象后,再调用他的getDataChannel()函数就可以和SurfaceFlinger中的EventThread对象进行通信了。
拿到通道后, 当通道有信号到达时,会调用NativeDisplayEventReceiver对象的handleEvent函数,取到数据后调用dispatchVsync()函数:
void NativeDisplayEventReceiver::dispatchVsync(nsecs_t timestamp, int32_t id, uint32_t count) {
JNIEnv* env = AndroidRuntime::getJNIEnv();
ScopedLocalRef<jobject> receiverObj(env, jniGetReferent(env, mReceiverWeakGlobal));
if (receiverObj.get()) {
ALOGV("receiver %p ~ Invoking vsync handler.", this);
env->CallVoidMethod(receiverObj.get(),
gDisplayEventReceiverClassInfo.dispatchVsync, timestamp, id, count);
ALOGV("receiver %p ~ Returned from vsync handler.", this);
}
mMessageQueue->raiseAndClearException(env, "dispatchVsync");
}
dispatchVsync会调用java层的dispatchVsync,这样信号就传到了java层。
java层的dispatchVsync:
// Called from native code.
@SuppressWarnings("unused")
private void dispatchVsync(long timestampNanos, int builtInDisplayId, int frame) {
onVsync(timestampNanos, builtInDisplayId, frame);
}
在Choreography里的DisplayEventReceiver是FrameDisplayEventReceiver, onVsync函数:
@Override
public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
// Ignore vsync from secondary display.
// This can be problematic because the call to scheduleVsync() is a one-shot.
// We need to ensure that we will still receive the vsync from the primary
// display which is the one we really care about. Ideally we should schedule
// vsync for a particular display.
// At this time Surface Flinger won't send us vsyncs for secondary displays
// but that could change in the future so let's log a message to help us remember
// that we need to fix this.
if (builtInDisplayId != SurfaceControl.BUILT_IN_DISPLAY_ID_MAIN) {
Log.d(TAG, "Received vsync from secondary display, but we don't support "
+ "this case yet. Choreographer needs a way to explicitly request "
+ "vsync for a specific display to ensure it doesn't lose track "
+ "of its scheduled vsync.");
scheduleVsync();
return;
}
// Post the vsync event to the Handler.
// The idea is to prevent incoming vsync events from completely starving
// the message queue. If there are no messages in the queue with timestamps
// earlier than the frame time, then the vsync event will be processed immediately.
// Otherwise, messages that predate the vsync event will be handled first.
long now = System.nanoTime();
if (timestampNanos > now) {
Log.w(TAG, "Frame time is " + ((timestampNanos - now) * 0.000001f)
+ " ms in the future! Check that graphics HAL is generating vsync "
+ "timestamps using the correct timebase.");
timestampNanos = now;
}
if (mHavePendingVsync) {
Log.w(TAG, "Already have a pending vsync event. There should only be "
+ "one at a time.");
} else {
mHavePendingVsync = true;
}
mTimestampNanos = timestampNanos;
mFrame = frame;
Message msg = Message.obtain(mHandler, this);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
}
onVsync发出一个消息后就返回了,并不影响VSync信号的继续传递,对消息的处理在run方法里。
@Override
public void run() {
mHavePendingVsync = false;
doFrame(mTimestampNanos, mFrame);
}
附FrameHandler的定义:
private final class FrameHandler extends Handler {
public FrameHandler(Looper looper) {
super(looper);
}
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_DO_FRAME:
doFrame(System.nanoTime(), 0);
break;
case MSG_DO_SCHEDULE_VSYNC:
doScheduleVsync();
break;
case MSG_DO_SCHEDULE_CALLBACK:
doScheduleCallback(msg.arg1);
break;
}
}
}
doFramef函数:
void doFrame(long frameTimeNanos, int frame) {
final long startNanos;
synchronized (mLock) {
if (!mFrameScheduled) {
return; // mFrameScheduled=false,则直接返回。
}
long intendedFrameTimeNanos = frameTimeNanos; //原本计划的绘帧时间点
startNanos = System.nanoTime();
final long jitterNanos = startNanos - frameTimeNanos;
if (jitterNanos >= mFrameIntervalNanos) {
final long skippedFrames = jitterNanos / mFrameIntervalNanos;
//当掉帧个数超过30,则输出相应log
if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
Log.i(TAG, "Skipped " + skippedFrames + " frames! "
+ "The application may be doing too much work on its main thread.");
}
final long lastFrameOffset = jitterNanos % mFrameIntervalNanos;
frameTimeNanos = startNanos - lastFrameOffset; //对齐帧的时间间隔
}
if (frameTimeNanos < mLastFrameTimeNanos) {
scheduleVsyncLocked();
return;
}
mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos);
mFrameScheduled = false;
mLastFrameTimeNanos = frameTimeNanos;
}
try {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame");
mFrameInfo.markInputHandlingStart();
doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);
mFrameInfo.markAnimationsStart();
doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);
mFrameInfo.markPerformTraversalsStart();
doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);
doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos);
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}
最终有4个回调方法,依次为如下:
INPUT:输入事件
ANIMATION:动画
TRAVERSAL:窗口刷新
COMMIT
参考文章:
深入解析Android5.0系统 刘超著
https://developer.android.com/reference/android/view/Choreographer
http://gityuan.com/2017/02/25/choreographer/
https://www.cnblogs.com/dasusu/p/8311324.html