深度残差收缩网络:(三)网络结构

(1)回顾一下深度残差网络的结构

在下图中,(a)-(c)分别是三种残差模块,(d)是深度残差网络的整体示意图。BN指的是批标准化(Batch Normalization),ReLU指的是整流线性单元激活函数(Rectifier Linear Unit),Conv指的是卷积层(Convolutional layer),Identity shortcut指的是跨层的恒等映射,RBU指的是残差模块(Residual Building Unit),GAP是全局均值池化(Global Average Pooling),FC是全连接层(Fully Connected Layer)。

C表示特征图的通道数,W表示特征图的宽度,1表示特征图的高度始终为1(这是因为这篇文章以一维的振动信号作为输入)。

在Conv后的括号中,K表示卷积层中卷积核的个数。当K=C时,输出特征图的通道数为C。当K=2C时,输出特征图的通道数为2C。/2表示的是卷积核每次移动的步长为2,从而使得输出特征图的宽度减半。

我们可以看到,在图(a)中,输入特征图的尺寸为C×W×1,输出特征图的尺寸也是C×W×1,也就是说,特征图的尺寸保持不变。在图(b)中,输出特征图的尺寸减小为C×(0.5W)×1,换言之,宽度减小为原先的一半。在图(c)中,输出特征图的尺寸变为2C×(0.5W)×1,即不仅宽度减小为原先的一半,而且通道数增加了一倍。

(2)深度残差收缩网络的网络结构

在该论文中,提出了两种深度残差收缩网络(Deep Residual Shrinkage Networks,简称DRSN)。第一种是“通道之间共享阈值的深度残差收缩网络(Deep Residual Shrinkage Networks with Channel-shared Thresholds,简称DRSN-CS)”,第二种是“逐通道不同阈值的深度残差收缩网络(Deep Residual Shrinkage Networks with Channel-wise Thresholds,简称DRSN-CW)”。

在下图中,(a)表示一种改进后的残差模块,名为“残差收缩模块-通道之间共享阈值(Residual Shrinkage Building Unit with Channel-shared thresholds,简称RSBU-CS)”;(b)表示的是DRSN-CS的整体结构示意图;(c)表示另一种改进后的残差模块,名为“残差收缩模块-逐通道不同阈值(Residual Shrinkage Building Unit with Channel-wise thresholds,简称RSBU-CW)”;(d)表示的是DRSN-CW的整体结构示意图。

其中,M表示的是全连接层神经元的个数。M=C表示神经元的个数与之前特征图的通道数相等,M=1表示神经元的个数为1。Absolute表示对特征图中的每个元素取绝对值,Average表示求特征图内所有元素的平均值。

可以看出,深度残差收缩网络的整体结构,和传统的深度残差网络,没有区别。其区别在于残差模块的不同。在改进后的残差模块中,不仅有一个软阈值化函数作为非线性层,而且嵌入了一个子网络,用于自动地设置软阈值化所需要的阈值。


转载网址:

深度残差收缩网络:(一)背景知识 https://www.cnblogs.com/yc-9527/p/11598844.html

深度残差收缩网络:(二)整体思路 https://www.cnblogs.com/yc-9527/p/11601322.html

深度残差收缩网络:(三)网络结构 https://www.cnblogs.com/yc-9527/p/11603320.html

深度残差收缩网络:(四)注意力机制下的阈值设置 https://www.cnblogs.com/yc-9527/p/11604082.html

深度残差收缩网络:(五)实验验证 https://www.cnblogs.com/yc-9527/p/11610073.html

深度残差收缩网络:(六)代码实现 https://www.cnblogs.com/yc-9527/p/12091581.html

原文链接:

M. Zhao, S. Zhong, X. Fu, B. Tang, and M. Pecht, “Deep Residual Shrinkage Networks for Fault Diagnosis,” IEEE Transactions on Industrial Informatics, 2019, DOI: 10.1109/TII.2019.2943898

https://ieeexplore.ieee.org/document/8850096

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容