算法笔记(4)-K-Means聚类算法及python代码实现

K-Means算法也被称为K-平均或K-均值算法,是一种广泛使用的聚类算法。K-Means算法是基于相似性的无监督的算法,通过比较样本之间的相似性,将较为相似的样本划分到同一类别中。


K-Means算法聚类图

K-Means算法步骤:


(1)初始化常数K,随机初始化K个聚类中心;
(2)重复计算以下过程,直到聚类中心不再改变;
        a.计算每个样本与每个聚类中心之间的相似度,将样本划分到最相似的类别
          中;
        b.计算划分到每个类别中的所有样本特征的均值,并将该均值作为每个类新的
           聚类中心。
(3)输出最终的聚类中心以及每个样本所属的类别。


K-Means算法python代码实现

def kmeans(data, k, centroids):
    '''根据KMeans算法求解聚类中心
    input:  data(mat):训练数据
            k(int):类别个数
            centroids(mat):随机初始化的聚类中心
    output: centroids(mat):训练完成的聚类中心
            subCenter(mat):每一个样本所属的类别
    '''
    m, n = np.shape(data) # m:样本的个数,n:特征的维度
    subCenter = np.mat(np.zeros((m, 2)))  # 初始化每一个样本所属的类别
    change = True  # 判断是否需要重新计算聚类中心
    while change == True:
        change = False  # 重置
        for i in range(m):
            minDist = np.inf  # 设置样本与聚类中心之间的最小的距离,初始值为正无穷
            minIndex = 0  # 所属的类别
            for j in range(k):
                # 计算i和每个聚类中心之间的距离
                dist = distance(data[i, ], centroids[j, ])
                if dist < minDist:
                    minDist = dist
                    minIndex = j
            # 判断是否需要改变
            if subCenter[i, 0] != minIndex:  # 需要改变
                change = True
                subCenter[i, ] = np.mat([minIndex, minDist])
        # 重新计算聚类中心
        for j in range(k):
            sum_all = np.mat(np.zeros((1, n)))
            r = 0  # 每个类别中的样本的个数
            for i in range(m):
                if subCenter[i, 0] == j:  # 计算第j个类别
                    sum_all += data[i, ]
                    r += 1
            for z in range(n):
                try:
                    centroids[j, z] = sum_all[0, z] / r
                except:
                    print(" r is zero")
    return subCenter

在机器学习算法中使用的距离函数主要有:


距离函数

闵可夫斯基距离


闵可夫斯基距离

曼哈顿距离


曼哈顿距离

欧式距离


欧式距离

每天专注分享大数据和人工智能技术,欢迎大家关注!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容