一文搞懂直方图均衡

直方图均衡

定义

根据维基百科上的定义, 直方图均衡(Histogram Equalization)是图像处理领域中利用直方图对对比度进行调整的方法.

顾名思义, 直方图均衡是将直方图的分布(概率密度)调整为均匀分布.

为什么要做直方图均衡

根据信息论, 信息的熵越大, 包含的信息也就越多, 熵的计算公式如下:

H=-\sum_{i=0}^{n}p(x_i)log_2(p(x_i)) \tag{1}

只有当 p(x_i) 均匀分布时, 熵的值最大. 对应到图像上, 当图像直方图均匀分布时, 图像对比度最大. 如下图所示:

image

蓝色为原始图像直方图, 绿色为均衡后直方图, 对应的处理后的图像为:

image

可以看到, 直方图均衡处理后, 图像变得更加清晰了.

怎么做直方图均衡

知道了为什么, 就要知道怎么做. 一般直方图均值有以下几个步骤:

  1. 统计图像的直方图, 归一化到[0,1]

p_r(r_k)=\frac{n_k}{H*W}, k=0,1,2,\cdot,L-1 \tag{2}

  1. 计算映射函数

s_k=T(r_k)=(L-1)\sum_{j=0}^{k}p_r(r_j) \tag{3}

式中, H, W 分别为图像的高和宽, n_k 表示灰度值为 r_k 的像素的个数, s_k 为变换后的灰度值, T(r_k) 为映射函数, 计算过程使用了累计直方图.

  1. 利用得到的映射函数, 对图像进行处理
  2. 对于RGB图像, 可以转到HSV空间, 对V通道进行均衡后, 转回RGB空间, 如下图所示结果:
image

为什么可以这么做

知道怎么做了, 就要知道为什么可以这么做. 这里解释下为啥可以这么做, 即公式(3)是怎么得到的.

设原始直方图分为为
p_r(r_k)

均衡化后的直方图分布为
p_s(s_k) = \frac {1}{L-1} \tag{4}

映射函数为
s_k=T(r_k)

这里映射函数必须为单调递增函数, 满足:

\int_0^{s_k}p_s(s)ds=\int_0^{r_k}p_r(r)dr \tag{5}

即对应区域间内像素点的总数是一样的, 如下图红色区域所示:

image

将公式(4)代入公式(5), 则有:

\frac{s_k}{L-1}=\int_0^{r_k}p_r(r)dr

因而, 可以得到:

s_k=(L-1)\int_0^{r_k}p_r(r)dr \tag{6}

对应的离散形式为公式(3).

存在问题

  1. 如果映射函数为公式(6), 为连续形式, 这种映射是可逆的, 但更改为离散形式, 公式(3)后, 变成了不可逆的.
  2. 映射变换会丢失信息, 对出现比例很少的灰度进行合并, 从而会丢失部分细节.
  3. 对于占比例较多的灰度, 则会将其拉伸, 而导致其占据了更多的灰度, 压缩了其他灰度.

改进

直方图均衡过度的强调了灰度个数的重要性, 对数量多的灰度过度的进行了增强, 而图像中, 比例比不是很多的灰度往往更重要, 因而改进的方向就是减少数量多的灰度的影响, 我这里想到的有 3 种方法:

  1. 对直方图开根号, 减少数量多灰度的影响;
  2. 对直方图进行截断, 超过部分数量直接去除, 从而减小数量多灰度的影响;
  3. 在第2种方法的基础上, 将超出部分均匀的加到直方图的每个bin上(该想法来源于CLAHE);

这3种方法的映射关系曲线如下所示:

image

从图中可以看到, 原始的直方图均衡后图像最亮, 如下所示为几种方法的结果对比, 依次为原图, 原始直方图, 改进0, 改进1, 改进2:

image

可以看到, 直方图可以改善图像整体的质量, 但对于某些局部图像, 则由于直方图的性质导致过亮或者过暗.

小结

这里总结下直方图均衡化的优缺点:

  1. 直方图均衡化算法简单, 速度快;
  2. 可以改善图像整体质量;
  3. 但对于图像局部质量改善效果不是很好;

参考

  1. https://zhuanlan.zhihu.com/p/44918476
  2. https://zhuanlan.zhihu.com/p/78017679
  3. https://zhuanlan.zhihu.com/p/37168516
  4. https://zh.wikipedia.org/wiki/%E7%9B%B4%E6%96%B9%E5%9B%BE%E5%9D%87%E8%A1%A1%E5%8C%96
  5. https://blog.csdn.net/yanhe156/article/details/83083659
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355

推荐阅读更多精彩内容