NGS010 测序数据质控

  1. Total data/reads:总数据量/总reads数目
  2. Q30:碱基测序质量值,Q=-10logP,P为碱基测序错误率,其中Q30代表碱基测序错误率为0.1%,也即该碱基测序1000次,出错的可能性为1次。
  3. Depth:测序深度
  4. Mapping ratio:比对率,有两种计算方式,及reads/base
  5. GC bias:GC含量分布,正常人基因组GC含量约为40%-60%
  6. Insert size:插入片段大小,应与文库分子大小一致
  7. Duplicate ratio:测序过程会产生起点、序列信息、终点均相同的reads,被称为duplication,其产生的原因主要为样本自身的重复片段,建库及捕获过程中的PCR富集,上机时的信号放大(如illumina的桥式PCR),以及荧光信号读取的光学误差等
  8. Chimera ratio
    在PCR反应中,在延伸阶段由于不完全延伸,就会导致嵌合体序列的出现。如下图所示:在扩增序列Template1的过程中,在序列延伸阶段,只产生了部分Template1序列在延伸阶段就结束了,在下一轮的PCR反应中,这部分序列作为序列Template2的引物接着延伸,扩增就会形成Template1和Template2的嵌合体序列。通常在PCR过程中,大概有1%的几率会出现嵌合体序列,而在16S/18S/ITS 扩增子测序的分析中,由于序列相似度很高,嵌合体可达1%-20%,因此需要去除嵌合体序列。去除嵌合体可以将拼接好的Tags比对到参考数据库当中确定嵌合体,然后进行去除。


    image.png
  9. Soft clip
    clip alignment:在比对过程中,并没有用到全部的read的序列,read两段的序列被截取了(clip or trim)。


    clip alignment

    spliced alignment:与clipped alignment对应,即read的中间没有比对到而两段比对上了


    spliced alignment

    clip alignment对应的CIGAR表示有两种S (soft clip)和H(hard clip),如果发现嵌合比对,最优的比对top hit标记为soft clipping,其余的则标记为hard clipping。如果是hard clip,则截取的部分不会在SAM文件对应的read中出现 (clipped sequences not present in SEQ),如果是soft clip (clipped sequences present in SEQ),则会出现
  10. Coverage
    覆盖均一性指的是读取在基因组或目标区域内的分布均一程度。覆盖越均匀,达到特定深度所需的测序就越少。覆盖均一性的偏向通常是在文库制备和文库扩增步骤中引入的。在很多时候,覆盖均一性表现出明显的GC偏向,也就是说,覆盖更少或更多,这取决于GC含量。
  11. Target ratio
    在靶向捕获测序过程中,在设计探针的过程中,有一定的容错率,也即探针和靶区并不是100%匹配的,所以最后捕获的reads,与靶区间会有一定的偏差,捕获效率一般有两种表达方式,基于reads可以做到70%以上,而基于base可以做到50%以上。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354