一、kafka基础知识
1、kafka是什么
类JMS消息队列,结合JMS中的两种模式,可以有多个消费者主动拉取数据,在JMS中只有点对点模式才有消费者主动拉取数据。
kafka是一个生产-消费模型。
Producer:生产者,只负责数据生产,生产者的代码可以集成到任务系统中。
数据的分发策略由producer决定,默认是defaultPartition Utils.abs(key.hashCode) % numPartitions
Broker:当前服务器上的Kafka进程,俗称拉皮条。只管数据存储,不管是谁生产,不管是谁消费。
在集群中每个broker都有一个唯一brokerid,不得重复。
Topic:目标发送的目的地,这是一个逻辑上的概念,落到磁盘上是一个partition的目录。partition的目录中有多个segment组合(index,log)
一个Topic对应多个partition[0,1,2,3],一个partition对应多个segment组合。一个segment有默认的大小是1G。
每个partition可以设置多个副本(replication-factor 1),会从所有的副本中选取一个leader出来。所有读写操作都是通过leader来进行的。
特别强调,和mysql中主从有区别,mysql做主从是为了读写分离,在kafka中读写操作都是leader。
ConsumerGroup:数据消费者组,ConsumerGroup可以有多个,每个ConsumerGroup消费的数据都是一样的。
可以把多个consumer线程划分为一个组,组里面所有成员共同消费一个topic的数据,组员之间不能重复消费。
2、kafka生产数据时的分组策略
默认是defaultPartition Utils.abs(key.hashCode) % numPartitions
上文中的key是producer在发送数据时传入的,produer.send(KeyedMessage(topic,myPartitionKey,messageContent))
3、kafka如何保证数据的完全生产
ack机制:broker表示发来的数据已确认接收无误,表示数据已经保存到磁盘。
0:不等待broker返回确认消息
1:等待topic中某个partition leader保存成功的状态反馈
-1:等待topic中某个partition 所有副本都保存成功的状态反馈
4、broker如何保存数据
在理论环境下,broker按照顺序读写的机制,可以每秒保存600M的数据。主要通过pagecache机制,尽可能的利用当前物理机器上的空闲内存来做缓存。
当前topic所属的broker,必定有一个该topic的partition,partition是一个磁盘目录。partition的目录中有多个segment组合(index,log)
5、partition如何分布在不同的broker上
int i = 0
list{kafka01,kafka02,kafka03}
for(int i=0;i<5;i++){
brIndex = i%broker;
hostName = list.get(brIndex)
}
6、consumerGroup的组员和partition之间如何做负载均衡
最好是一一对应,一个partition对应一个consumer。
如果consumer的数量过多,必然有空闲的consumer。
算法:
假如topic1,具有如下partitions: P0,P1,P2,P3
加入group中,有如下consumer: C1,C2
首先根据partition索引号对partitions排序: P0,P1,P2,P3
根据consumer.id排序: C0,C1
计算倍数: M = [P0,P1,P2,P3].size / [C0,C1].size,本例值M=2(向上取整)
然后依次分配partitions: C0 = [P0,P1],C1=[P2,P3],即Ci = [P(i * M),P((i + 1) * M -1)]
7、如何保证kafka消费者消费数据是全局有序的
伪命题
如果要全局有序的,必须保证生产有序,存储有序,消费有序。
由于生产可以做集群,存储可以分片,消费可以设置为一个consumerGroup,要保证全局有序,就需要保证每个环节都有序。
只有一个可能,就是一个生产者,一个partition,一个消费者。这种场景和大数据应用场景相悖。
二、kafka详细
1、Kafka整体结构图
Kafka名词解释和工作方式
Producer :消息生产者,就是向kafka broker发消息的客户端。
Consumer :消息消费者,向kafka broker取消息的客户端
Topic :咱们可以理解为一个队列。
Consumer Group (CG):这是kafka用来实现一个topic消息的广播(发给所有的consumer)和单播(发给任意一个consumer)的手段。一个topic可以有多个CG。topic的消息会复制(不是真的复制,是概念上的)到所有的CG,但每个partion只会把消息发给该CG中的一个consumer。如果需要实现广播,只要每个consumer有一个独立的CG就可以了。要实现单播只要所有的consumer在同一个CG。用CG还可以将consumer进行自由的分组而不需要多次发送消息到不同的topic。
Broker :一台kafka服务器就是一个broker。一个集群由多个broker组成。一个broker可以容纳多个topic。
Partition:为了实现扩展性,一个非常大的topic可以分布到多个broker(即服务器)上,一个topic可以分为多个partition,每个partition是一个有序的队列。partition中的每条消息都会被分配一个有序的id(offset)。kafka只保证按一个partition中的顺序将消息发给consumer,不保证一个topic的整体(多个partition间)的顺序。
Offset:kafka的存储文件都是按照offset.kafka来命名,用offset做名字的好处是方便查找。例如你想找位于2049的位置,只要找到2048.kafka的文件即可。当然the first offset就是00000000000.kafka
2、Consumer与topic关系
本质上kafka只支持Topic;
2.1 每个group中可以有多个consumer,每个consumer属于一个consumer group;
通常情况下,一个group中会包含多个consumer,这样不仅可以提高topic中消息的并发消费能力,而且还能提高"故障容错"性,如果group中的某个consumer失效那么其消费的partitions将会有其他consumer自动接管。
2.2 对于Topic中的一条特定的消息,只会被订阅此Topic的每个group中的其中一个consumer消费,此消息不会发送给一个group的多个consumer;
那么一个group中所有的consumer将会交错的消费整个Topic,每个group中consumer消息消费互相独立,我们可以认为一个group是一个"订阅"者。
2.3 在kafka中,一个partition中的消息只会被group中的一个consumer消费(同一时刻);
一个Topic中的每个partions,只会被一个"订阅者"中的一个consumer消费,不过一个consumer可以同时消费多个partitions中的消息。
2.4 kafka的设计原理决定,对于一个topic,同一个group中不能有多于partitions个数的consumer同时消费,否则将意味着某些consumer将无法得到消息。
2.5 kafka只能保证一个partition中的消息被某个consumer消费时是顺序的;事实上,从Topic角度来说,当有多个partitions时,消息仍不是全局有序的。
3、Kafka消息的分发
Producer客户端负责消息的分发
3.1 kafka集群中的任何一个broker都可以向producer提供metadata信息,这些metadata中包含"集群中存活的servers列表"/"partitions leader列表"等信息;
3.2 当producer获取到metadata信息之后, producer将会和Topic下所有partition leader保持socket连接;
3.3 消息由producer直接通过socket发送到broker,中间不会经过任何"路由层",事实上,消息被路由到哪个partition上由producer客户端决定;
比如可以采用"random""key-hash""轮询"等,如果一个topic中有多个partitions,那么在producer端实现"消息均衡分发"是必要的。
3.4 在producer端的配置文件中,开发者可以指定partition路由的方式。
Producer消息发送的应答机制
设置发送数据是否需要服务端的反馈,有三个值0,1,-1
0: producer不会等待broker发送ack
1: 当leader接收到消息之后发送ack
-1: 当所有的follower都同步消息成功后发送ack
request.required.acks=0
4、Consumer的负载均衡
当一个group中,有consumer加入或者离开时,会触发partitions均衡.均衡的最终目的,是提升topic的并发消费能力,步骤如下:
1、 假如topic1,具有如下partitions: P0,P1,P2,P3
2、 加入group中,有如下consumer: C1,C2
3、 首先根据partition索引号对partitions排序: P0,P1,P2,P3
4、 根据consumer.id排序: C0,C1
5、 计算倍数: M = [P0,P1,P2,P3].size / [C0,C1].size,本例值M=2(向上取整)
6、 然后依次分配partitions: C0 = [P0,P1],C1=[P2,P3],即Ci = [P(i * M),P((i + 1) * M -1)]
5、kafka文件存储机制
5.1、Kafka文件存储基本结构
5.1.1 在Kafka文件存储中,同一个topic下有多个不同partition,每个partition为一个目录,partiton命名规则为topic名称+有序序号,第一个partiton序号从0开始,序号最大值为partitions数量减1。
5.1.2 每个partion(目录)相当于一个巨型文件被平均分配到多个大小相等segment(段)数据文件中。但每个段segment file消息数量不一定相等,这种特性方便old segment file快速被删除。默认保留7天的数据。
5.1.3 每个partiton只需要支持顺序读写就行了,segment文件生命周期由服务端配置参数决定。(什么时候创建,什么时候删除)
数据有序的讨论?
一个partition的数据是否是有序的? 间隔性有序,不连续
针对一个topic里面的数据,只能做到partition内部有序,不能做到全局有序。
特别加入消费者的场景后,如何保证消费者消费的数据全局有序的?伪命题。
只有一种情况下才能保证全局有序?就是只有一个partition。
5.2、Kafka Partition Segment
5.2.1 Segment file组成:由2大部分组成,分别为index file和data file,此2个文件一一对应,成对出现,后缀".index"和“.log”分别表示为segment索引文件、数据文件。
5.2.2 Segment文件命名规则:partion全局的第一个segment从0开始,后续每个segment文件名为上一个segment文件最后一条消息的offset值。数值最大为64位long大小,19位数字字符长度,没有数字用0填充。
5.2.3 索引文件存储大量元数据,数据文件存储大量消息,索引文件中元数据指向对应数据文件中message的物理偏移地址。
3,497:当前log文件中的第几条信息,存放在磁盘上的那个地方
segment data file由许多message组成, qq物理结构如下:
关键字 解释说明
8 byte offset 在parition(分区)内的每条消息都有一个有序的id号,这个id号被称为偏移(offset),它可以唯一确定每条消息在parition(分区)内的位置。即offset表示partiion的第多少message
4 byte message size message大小
4 byte CRC32 用crc32校验message
1 byte “magic" 表示本次发布Kafka服务程序协议版本号
1 byte “attributes" 表示为独立版本、或标识压缩类型、或编码类型。
4 byte key length 表示key的长度,当key为-1时,K byte key字段不填
K byte key 可选
value bytes payload 表示实际消息数据。
5.3、Kafka 查找message
读取offset=368776的message,需要通过下面2个步骤查找。
5.3.1、查找segment file
00000000000000000000.index表示最开始的文件,起始偏移量(offset)为0
00000000000000368769.index的消息量起始偏移量为368770 = 368769 + 1
00000000000000737337.index的起始偏移量为737338=737337 + 1
其他后续文件依次类推。
以起始偏移量命名并排序这些文件,只要根据offset **二分查找**文件列表,就可以快速定位到具体文件。当offset=368776时定位到00000000000000368769.index和对应log文件。
5.3.2、通过segment file查找message
当offset=368776时,依次定位到00000000000000368769.index的元数据物理位置和00000000000000368769.log的物理偏移地址
然后再通过00000000000000368769.log顺序查找直到offset=368776为止。
6、Kafka自定义Partition
import kafka.javaapi.producer.Producer;
import kafka.producer.KeyedMessage;
import kafka.producer.ProducerConfig;
import java.util.Properties;
public class MyKafkaProducer {
public static void main(String[] args) {
Properties properties = new Properties();
properties.put("metadata.broker.list","mini1:9092");
// 默认的序列化为byte改为string
properties.put("serializer.class","kafka.serializer.StringEncoder");
/**
* 自定义parition的基本步骤
* 1、实现partition类
* 2、加一个构造器,MyPartitioner(VerifiableProperties properties)
* 3、将自定义的parititoner加入到properties中
* properties.put("partitioner.class","cn.itcast.MyPartitioner")
* 4、producer.send方法中必须指定一个paritionKey
*/
properties.put("partitioner.class","cn.itcast.MyPartitioner");
Producer producer = new Producer(new ProducerConfig(properties));
while (true){
producer.send(new KeyedMessage("order4","zhang","我爱我的祖国"));
// producer.send(new KeyedMessage("order","我爱我的祖国"));
}
}
}
import kafka.producer.Partitioner;
import kafka.utils.VerifiableProperties;
/**
* http://www.cnblogs.com/wxd0108/p/6519973.html
*/
public class MyPartitioner implements Partitioner {
public MyPartitioner(VerifiableProperties properties) {
}
public int partition(Object key, int numPartitions) {
return 2;
}
}