数据蒋堂 | JOIN延伸 - 维度其它应用

摘要: 明确维度定义后,还可以换一种更清晰的方式来审视数据库的结构。 这是我们常见的E-R图: E-R图是个网状结构,实体(表)之间的外键关系直接画在图上,当实体较多时这个图就会显得非常零乱,关联线很随意,任何两个实体之间都有可能发生关联,表现出来的数据结构耦合度很高。

明确维度定义后,还可以换一种更清晰的方式来审视数据库的结构。

这是我们常见的E-R图:

E-R图是个网状结构,实体(表)之间的外键关系直接画在图上,当实体较多时这个图就会显得非常零乱,关联线很随意,任何两个实体之间都有可能发生关联,表现出来的数据结构耦合度很高。在增加删除实体时就要考虑与之关联的所有其它实体,很可能发生遗漏关联或循环关联的现象。

而如果把维度抽取出来之后,我们可以使用总线式的结构图:

所有维度单独列出来处于中心地位,实体(表)只和维度发生关联,实体之间没有直接的关联线,数据结构的耦合度看起来很低。增加删除实体时不会影响到其它实体,不会发生遗漏关联和重复关联。

不过,需要指出的是。无论是E-R图还是总线图,只要画正确时,其中的关联线数量是差不多的,这是数据本身的关系决定的。总线图并不会比E-R中的关联线更少,但改变了看待方法后会更清晰。

为了提供关联查询能力,有些BI产品将表间关联关系(相当于一个局部E-R图)直接暴露给业务人员,这不是个好办法,业务人员难以理解E-R图,这个方案的可用性很差。如果能够由业务人员选择了数据项(字段)后就自动建立出合理的关联,那样可用性就能提高很多了。

有了维度概念,就可以一定程度地实现这一目标。

业务人员任意选择了字段之后,我们可以找出这些字段所在表,再在这些表之间寻找同维字段(优先选择主键),然后使用这些同维字段建立JOIN关系。当某个表上只有唯一的字段和另一表的主键字段同维时,那么基于这两个字段建立的JOIN关系在绝大多数情况下都是正确合理的。而且,在数据结构不是特别复杂的时候,两表之间只有唯一字段同维的条件也常常能够满足,这时候就真地能只基于数据项自动建立正确的关联关系,有些BI产品确实是这么做的。

不过,这种办法不能处理同表自关联和表间有多个同维字段的情况,以及多次递归关联的问题。想要完善地解决问题,还是需要基于DQL语法来实现关联。

上面的讨论中,我们会把发现的同维字段JOIN起来,DQL语法也是这样,只要同维的(广义)字段就可以JOIN。这样的JOIN一定有业务意义吗?

是的,只要是同维字段,JOIN起来总能想出合理业务意义。反过来,也只有同维字段之间可以JOIN,不同维字段的JOIN是没有业务意义的,不过SQL并不禁止,只要数据类型相同就可以JOIN。字段同维和JOIN有业务意义是等价的,DQL在这方面可以确保这一点。

DQL中GROUP BY总是要对应着ON(如果单表可以看成是省略ON),也就是说,GROUP BY总是针对某个维度进行的。事实上也是这样,针对测度的分组运算没有业务意义,不过SQL并没有明确出维度和测度的概念,也不会禁止这个运算。DQL则确保了不会发生无业务意义的分组。

利用这个特点,可以提高分组运算的性能。维度可能的取值是由维表长度决定的,而维表是事先知道的,这样在分组时可以采用类似基数排序法的手段提速,当然,针对维度的排序运算也可以用这种办法。不过,这个算法细节与本篇主题相关性较低,这里就不详细说明了。

原文发布时间为:2018-01-11

本文作者:蒋步星

本文来自云栖社区合作伙伴“数据派THU”,了解相关信息可以关注“数据派THU”微信公众号

如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件至:yqgroup@service.aliyun.com 进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容。

原文链接

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容