机器学习常见算法优缺点总结【转】

转自:机器学习常见算法总结
K近邻:算法采用测量不同特征值之间的距离的方法进行分类。
优点:
1.简单好用,容易理解,精度高,理论成熟,既可以用来做分类也可以用来做回归;
2.可用于数值型数据和离散型数据;
3.训练时间复杂度为O(n);无数据输入假定;
4.对异常值不敏感
缺点:
1.计算复杂性高;空间复杂性高;
2.样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);
3.一般数值很大的时候不用这个,计算量太大。但是单个样本又不能太少 否则容易发生误分。
4.最大的缺点是无法给出数据的内在含义。

朴素贝叶斯
优点:
1.生成式模型,通过计算概率来进行分类,可以用来处理多分类问题,
2.对小规模的数据表现很好,适合多分类任务,适合增量式训练,算法也比较简单。

缺点:
1.对输入数据的表达形式很敏感,
2.由于朴素贝叶斯的“朴素”特点,所以会带来一些准确率上的损失。
3.需要计算先验概率,分类决策存在错误率。

决策树
优点:
1.概念简单,计算复杂度不高,可解释性强,输出结果易于理解;
2.数据的准备工作简单, 能够同时处理数据型和常规型属性,其他的技术往往要求数据属性的单一。
3.对中间值得确实不敏感,比较适合处理有缺失属性值的样本,能够处理不相关的特征;
4.应用范围广,可以对很多属性的数据集构造决策树,可扩展性强。决策树可以用于不熟悉的数据集合,并从中提取出一些列规则 这一点强于KNN。
缺点:
1.容易出现过拟合;
2.对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。

  1. 信息缺失时处理起来比较困难。 忽略数据集中属性之间的相关性。

Svm
优点:
1.可用于线性/非线性分类,也可以用于回归,泛化错误率低,计算开销不大,结果容易解释;
2.可以解决小样本情况下的机器学习问题,可以解决高维问题 可以避免神经网络结构选择和局部极小点问题。
3.SVM是最好的现成的分类器,现成是指不加修改可直接使用。并且能够得到较低的错误率,SVM可以对训练集之外的数据点做很好的分类决策。
缺点:对参数调节和和函数的选择敏感,原始分类器不加修改仅适用于处理二分类问题。

Logistic回归:
根据现有数据对分类边界线建立回归公式,依次进行分类。
优点:
实现简单,易于理解和实现;
计算代价不高,速度很快,存储资源低;

缺点:
容易欠拟合,分类精度可能不高

EM 期望最大化算法-上帝算法
只要有一些训练数据,再定义一个最大化函数,采用EM算法,利用计算机经过若干次迭代,就可以得到所需的模型。EM算法是自收敛的分类算法,既不需要事先设定类别也不需要数据见的两两比较合并等操作。缺点是当所要优化的函数不是凸函数时,EM算法容易给出局部最佳解,而不是最优解。
【参考文献】 机器学习–判别式模型与生成式模型 http://www.cnblogs.com/fanyabo/p/4067295.html

数据挖掘十大算法—-EM算法(最大期望算法) http://www.tuicool.com/articles/Av6NVzy 各种分类算法的优缺点 - 学习笔记1.0 - 经管之家(原人大经济论坛) http://bbs.pinggu.org/thread-2604496-1-1.html 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理) http://www.cnblogs.com/tornadomeet/p/3395593.html 吴军.数学之美[M].北京:人民邮电出版社,2014. Peter Harrington,李锐,李鹏,曲亚东,王斌.机器学习实战[M].北京:人民邮电出版社2013. 李航.统计学习方法[M].北京:清华大学出版社 2012. 杉山将,许永伟.图解机器学习[M].北京:人民邮电出版社2015. 斯坦福大学公开课 :机器学习课程

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,509评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,806评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,875评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,441评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,488评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,365评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,190评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,062评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,500评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,706评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,834评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,559评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,167评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,779评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,912评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,958评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,779评论 2 354

推荐阅读更多精彩内容