#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 19 08:49:34 2018
@author: tianmu
"""
"""
小记:
可以将此例假设为买卖东西。商品成本为1元,利润为10元。
为求利润最大化,即损失最小,需要用优化器AdamOptimizer来预测。
"""
import tensorflow as tf
from numpy.random import RandomState
batch_size = 8
x = tf.placeholder(tf.float32,shape=(None,2),name='x-input')
y_= tf.placeholder(tf.float32,shape=(None,1),name='y-input')
w1 = tf.Variable(tf.random_normal([2,1],stddev=1,seed=1))
y = tf.matmul(x,w1)
#成本和利润
loss_less=10
loss_more=1
#定义预测多了和预测少了的成本,此例需要loss尽量的少
loss=tf.reduce_sum(tf.where(tf.greater(y,y_),(y-y_)*loss_more,(y_-y)*loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
rdm=RandomState()
dataset_size = 128
X=rdm.rand(dataset_size,2)
Y=[[x1+x2+rdm.rand()/10-0.05] for (x1,x2) in X]
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS= 5000
for i in range(STEPS):
start = (i*batch_size) % dataset_size
end = min(start+batch_size,dataset_size)
sess.run(train_step,
feed_dict={x:X[start:end],y_:Y[start:end]})
print(sess.run(w1))
自定义损失函数
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
推荐阅读更多精彩内容
- 上一篇文章讲了假设函数和损失函数的基本定义,这篇文章讲讲它们在实际问题中到底是怎么样的。 假设函数 虽说是实际问题...