Apache Ignite提供了一个强大的查询API,支持基于谓词的扫描查询、符合ANSI-99的SQL查询、文本搜索查询和持续查询。
假设缓存包含以下Company对象:
public class Company {
private Long id;
private String companyName;
private String email;
private String address;
private String city;
private String state;
private String zipCode;
private String phoneNumber;
private String faxNumber;
private String webAddress;
}
缓存的company数据记录将被分区并分布在Ignite数据网格中。你可以查询遍历缓存记录,并查找感兴趣的特定记录。但是遍历整个缓存并是低效的,因为必须获取整个数据集并在本地迭代。如果数据集非常大,将会增加网络传输负担。Apache Ignite提供了一个编程接口,允许对缓存数据集执行不同类型的查询。你可以根据应用程序需求选择API,例如,如果你想执行文本搜索,Ignite文本查询是最佳选择。
Apache Ignite提供了查询API的两个主要抽象:Query和QueryCursor接口:
Name | Description |
---|---|
Query | 所有Ignite缓存查询的基类。必须使用SqlQuery和TextQuery进行SQL和文本查询。这个抽象类还提供了setLocal()和setPageSize()等方法来在本地节点中执行查询,并为返回的游标设置页面大小。 |
QueryCursor | 接口,用翻页迭代表示查询结果。当不需要分页时,可以使用QueryCursor.getAll()方法,它将获取整个查询结果并将其存储在集合中。注意,无论何时在for循环中迭代游标或显式地获取迭代器,都必须显式地关闭游标。 |
Scan queries
Ignite Scan queries允许在缓存数据集上运行分布式查询。如果没有指定谓词,查询返回缓存的所有数据记录。你可以根据存储在缓存中的对象定义任何谓词。
查询将对所有数据记录应用谓词以查找匹配。为了演示扫描查询的功能,我们将使用以下数据集。
where
- ID: Serial Number
- CAT: CAT (公司名称首写字母)
- COMPANY_NAME:公司名称
- EMAIL: 公司或个人使用的email
- ADDRESS:街道地址或地区
- CITY:城市名称
- STATE:州名
- ZIPCODE:邮编
- PHONE_NUMBER:公司或个人联系电话
- FAX_NUMBER:传真
该数据集包含位于纽约州的所有公司联系信息。我们将把CSV文件中的数据记录加载到缓存中,并应用一些谓词扫描查询缓存中的数据记录。
Step 1
使用以下依赖项创建一个新的Maven项目。
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.mycookcode.bigData.ignite</groupId>
<artifactId>ignite-textquery</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>ignite-textquery</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<ignite.version>2.6.0</ignite.version>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-core</artifactId>
<version>${ignite.version}</version>
</dependency>
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-indexing</artifactId>
<version>${ignite.version}</version>
</dependency>
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-spring</artifactId>
<version>${ignite.version}</version>
</dependency>
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-slf4j</artifactId>
<version>${ignite.version}</version>
</dependency>
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-log4j</artifactId>
<version>${ignite.version}</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.25</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.3</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<groupId>com.jolira</groupId>
<artifactId>onejar-maven-plugin</artifactId>
<version>1.4.4</version>
<executions>
<execution>
<id>build-query</id>
<configuration>
<mainClass>com.mycookcode.bigData.ignite.App</mainClass>
<attachToBuild>true</attachToBuild>
<classifier>onejar</classifier>
<filename>textquery-runnable.jar</filename>
</configuration>
<goals>
<goal>one-jar</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
Step 2
首先,创建一个新的Java类com.mycookcode.bigData.ignite.model.Company在src\main\java\com\mycookcode\bigData\ignite\model目录,它将代表数据集。
package com.mycookcode.bigData.ignite.model;
import org.apache.ignite.cache.query.annotations.QueryTextField;
import java.io.Serializable;
public class Company implements Serializable {
private Long id;
@QueryTextField
private String cat;
@QueryTextField
private String companyName;
@QueryTextField
private String email;
@QueryTextField
private String address;
@QueryTextField
private String city;
@QueryTextField
private String state;
@QueryTextField
private String zipCode;
@QueryTextField
private String phoneNumber;
@QueryTextField
private String faxNumber;
@QueryTextField
private String sicCode;
@QueryTextField
private String sicDescription;
@QueryTextField
private String webAddress;
public Company(Long id, String cat, String companyName, String email, String address, String city, String state, String zipCode, String phoneNumber, String faxNumber, String sicCode, String sicDescription, String webAddress) {
this.id = id;
this.cat = cat;
this.companyName = companyName;
this.email = email;
this.address = address;
this.city = city;
this.state = state;
this.zipCode = zipCode;
this.phoneNumber = phoneNumber;
this.faxNumber = faxNumber;
this.sicCode = sicCode;
this.sicDescription = sicDescription;
this.webAddress = webAddress;
}
public Long getId() {
return id;
}
public void setId(Long id) {
this.id = id;
}
public String getCat() {
return cat;
}
public void setCat(String cat) {
this.cat = cat;
}
public String getCompanyName() {
return companyName;
}
public void setCompanyName(String companyName) {
this.companyName = companyName;
}
public String getEmail() {
return email;
}
public void setEmail(String email) {
this.email = email;
}
public String getAddress() {
return address;
}
public void setAddress(String address) {
this.address = address;
}
public String getCity() {
return city;
}
public void setCity(String city) {
this.city = city;
}
public String getState() {
return state;
}
public void setState(String state) {
this.state = state;
}
public String getZipCode() {
return zipCode;
}
public void setZipCode(String zipCode) {
this.zipCode = zipCode;
}
public String getPhoneNumber() {
return phoneNumber;
}
public void setPhoneNumber(String phoneNumber) {
this.phoneNumber = phoneNumber;
}
public String getFaxNumber() {
return faxNumber;
}
public void setFaxNumber(String faxNumber) {
this.faxNumber = faxNumber;
}
public String getSicCode() {
return sicCode;
}
public void setSicCode(String sicCode) {
this.sicCode = sicCode;
}
public String getSicDescription() {
return sicDescription;
}
public void setSicDescription(String sicDescription) {
this.sicDescription = sicDescription;
}
public String getWebAddress() {
return webAddress;
}
public void setWebAddress(String webAddress) {
this.webAddress = webAddress;
}
@Override
public String toString() {
return "Company{" +
"id=" + id +
", cat='" + cat + '\'' +
", companyName='" + companyName + '\'' +
", email='" + email + '\'' +
", address='" + address + '\'' +
", city='" + city + '\'' +
", state='" + state + '\'' +
", zipCode='" + zipCode + '\'' +
", phoneNumber='" + phoneNumber + '\'' +
", faxNumber='" + faxNumber + '\'' +
", sicCode='" + sicCode + '\'' +
", sicDescription='" + sicDescription + '\'' +
", webAddress='" + webAddress + '\'' +
'}';
}
}
Step 3
现在,可以创建另一个Java类并添加一个方法来将数据从CSV文件加载到Ignite缓存中(样例数据下载地址:https://pan.baidu.com/s/1IkAG0BXbn68na0wAHmC0Q)。在文件夹src/main/java/com/mycookcode/bigData/ignite目录中创建一个新的Java类com.mycookcode.bigData.ignite.App。添加一个名为initialize()的方法,代码如下:
private static void initialize()throws InterruptedException,IOException
{
IgniteCache<Long,Company> companyCache = Ignition.ignite().cache(COMPANY_CACHE_NAME);
//启动之前清空缓存
companyCache.clear();
try(Stream<String> lines = Files.lines(Paths.get("/data/USA_NY_email_addresses.csv"))
//Stream<String> lines = Files.lines(Paths.get(App.class.getClassLoader().getResources("USA_NY_email_addresses.csv").toString()))
)
{
lines.skip(1).map(s1 -> s1.split("\",\"")).map(s2 -> new Company(Long.valueOf(s2[0].replaceAll("\"", "")), s2[1], s2[2], s2[3], s2[4], s2[5], s2[6], s2[7], s2[8], s2[9], s2[10], s2[11], s2[12].replaceAll("\"", "")))
.forEach(r -> companyCache.put(r.getId(),r));
}catch (IOException e)
{
System.out.println(e.getMessage());
}
Thread.sleep(1000);
}
首先,我们用companyCache创建一个Ignite缓存,它将存储公司的所有数据记录。然后usa_ny_email_address.csv文件做为数据流被Java 8 Stream API读取。接下来,我们跳过第一行CSV文件,按' '分割每一行,并创建新的公司对象存储到Ignite缓存中。上面代码的最后一行强制应用程序等待一秒钟,以确保集群的所有节点都处理put请求。
Step 4
将Ignite Scan查询应用到缓存。在App类中添加一个新的Java方法scanQuery(),如下所示:
{
IgniteCache<Long,Company> companyCache = Ignition.ignite().cache(COMPANY_CACHE_NAME);
//查询所有城市“纽约”-纽约的公司
QueryCursor queryCursor = companyCache.query(new ScanQuery<Long,Company>((k,p) -> p.getCity().equalsIgnoreCase("NEW YORK")));
for (Iterator ite = queryCursor.iterator();ite.hasNext();)
{
IgniteBiTuple<Long,Company> company = (IgniteBiTuple<Long, Company>) ite.next();
System.out.println(company.getValue().getCompanyName());
}
queryCursor.close();
}
在上面的伪代码中,我们首先获取公司的Ignite缓存,并使用Java 8 lambda表达式创建一个新的scan查询。我们还传递了以下谓词表达式:
p.getCity().equalsIgnoreCase("NEW YORK")
查询公司对象的城市名称等于纽约的数据。Ignite将对所有缓存数据记录应用上述谓词,并返回该缓存数据记录的QueryCursor,其城市名称等于纽约。然后,我们简单地遍历查询游标并在控制台上打印公司名称。
Step 5
编译和执行应用程序,运行以下命令:
mvn clean install && java –jar target/textquery-runnable.jar scanquery
上图显示了Ignite scan查询找到所有城市名称为New York的公司。
Text queries
Apache Ignite中的文本查询允许对基于字符的缓存项运行全文本查询。为什么需要全文搜索查询,以及它与扫描查询的区别?例如,我们想找到纽约美容院的名单。通过扫描查询,我可以运行以下查询:
TextQuery<Integer, Company> primavera = new TextQuery<>(Company.class, "beauty saloon");
以上查询将返回公司名称中包含美容院的公司名单。但这种方法也有一些缺点:
- 它将扫描整个缓存,如果缓存包含大量数据集,这将非常低效。
- 如果运行查询,我们不得不需要知道公司对象的属性。在这个例子中,使用的是公司名称。
- 当使用基于不同属性的复杂谓词时,扫描查询将变得复杂。
在日常生活中,我们在网上进行大量的文本搜索:谷歌或Bing。大多数搜索引擎的工作原理是全文搜索。我们在谷歌的搜索框中输入搜索项;谷歌搜索引擎返回包含搜索项的网站或资源的列表。
Apache Ignite支持基于Lucene索引的基于文本的检索查询。Lucene是Java中的开源全文本搜索库,可以很容易地为任何应用程序添加搜索功能。Lucene通过向全文索引添加内容来实现。然后它允许对这个索引执行查询。这种类型的索引称为反向索引,因为它将以page-centric为数据结构(page->words)转换为以keyword-centric为数据结构(word->pages)。你可以把它想象成书后面的索引。
在Lucene中,文档是索引和搜索的单位。索引可以包含一个或多个文档。Lucene文档不一定非得是Microsoft word中的文档。例如,如果您正在创建一个公司的Lucene索引,那么每个公司都将在Lucene索引中表示一个文档。Lucene search可以通过Lucene IndexSearcher从索引中检索文档。
在Apache Ignite中,每个节点都包含一个本地Lucene引擎,它将索引存储在本地缓存中的数据记录。当执行任何分布式全文查询时,每个节点通过IndexSearcher在本地索引中执行搜索,并将结果发送回客户机节点,在那里聚合结果。
我们将使用前面的相同数据集,并扩展应用程序以在Ignite cache中执行文本搜索。先稍微修改一下maven项目,添加全文搜索功能:
Step 1
添加以下maven依赖项如下:
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-indexing</artifactId>
<version>2.6.0</version>
</dependency>
Step 2
向com.mycookcode.bigData.ignite.model的每个字段添加@QueryTextField注释。要使用Lucene对Company类进行索引以进行全文搜索。
package com.mycookcode.bigData.ignite.model;
import org.apache.ignite.cache.query.annotations.QueryTextField;
import java.io.Serializable;
public class Company implements Serializable {
private Long id;
@QueryTextField
private String cat;
@QueryTextField
private String companyName;
@QueryTextField
private String email;
@QueryTextField
private String address;
@QueryTextField
private String city;
@QueryTextField
private String state;
@QueryTextField
private String zipCode;
@QueryTextField
private String phoneNumber;
@QueryTextField
private String faxNumber;
@QueryTextField
private String sicCode;
@QueryTextField
private String sicDescription;
@QueryTextField
private String webAddress;
public Company(Long id, String cat, String companyName, String email, String address, String city, String state, String zipCode, String phoneNumber, String faxNumber, String sicCode, String sicDescription, String webAddress) {
this.id = id;
this.cat = cat;
this.companyName = companyName;
this.email = email;
this.address = address;
this.city = city;
this.state = state;
this.zipCode = zipCode;
this.phoneNumber = phoneNumber;
this.faxNumber = faxNumber;
this.sicCode = sicCode;
this.sicDescription = sicDescription;
this.webAddress = webAddress;
}
public Long getId() {
return id;
}
public void setId(Long id) {
this.id = id;
}
public String getCat() {
return cat;
}
public void setCat(String cat) {
this.cat = cat;
}
public String getCompanyName() {
return companyName;
}
public void setCompanyName(String companyName) {
this.companyName = companyName;
}
public String getEmail() {
return email;
}
public void setEmail(String email) {
this.email = email;
}
public String getAddress() {
return address;
}
public void setAddress(String address) {
this.address = address;
}
public String getCity() {
return city;
}
public void setCity(String city) {
this.city = city;
}
public String getState() {
return state;
}
public void setState(String state) {
this.state = state;
}
public String getZipCode() {
return zipCode;
}
public void setZipCode(String zipCode) {
this.zipCode = zipCode;
}
public String getPhoneNumber() {
return phoneNumber;
}
public void setPhoneNumber(String phoneNumber) {
this.phoneNumber = phoneNumber;
}
public String getFaxNumber() {
return faxNumber;
}
public void setFaxNumber(String faxNumber) {
this.faxNumber = faxNumber;
}
public String getSicCode() {
return sicCode;
}
public void setSicCode(String sicCode) {
this.sicCode = sicCode;
}
public String getSicDescription() {
return sicDescription;
}
public void setSicDescription(String sicDescription) {
this.sicDescription = sicDescription;
}
public String getWebAddress() {
return webAddress;
}
public void setWebAddress(String webAddress) {
this.webAddress = webAddress;
}
@Override
public String toString() {
return "Company{" +
"id=" + id +
", cat='" + cat + '\'' +
", companyName='" + companyName + '\'' +
", email='" + email + '\'' +
", address='" + address + '\'' +
", city='" + city + '\'' +
", state='" + state + '\'' +
", zipCode='" + zipCode + '\'' +
", phoneNumber='" + phoneNumber + '\'' +
", faxNumber='" + faxNumber + '\'' +
", sicCode='" + sicCode + '\'' +
", sicDescription='" + sicDescription + '\'' +
", webAddress='" + webAddress + '\'' +
'}';
}
}
Step 3
创建一个新的静态方法叫textQuery与以下内容:
private static void textQuery()
{
IgniteCache<Long,Company> companyCache = Ignition.ignite().cache(COMPANY_CACHE_NAME);
TextQuery<Integer,Company> john = new TextQuery<>(Company.class,"John");
TextQuery<Integer, Company> primavera = new TextQuery<>(Company.class, "beauty saloon");
System.out.println("==So many companies with information about 'John'=="+companyCache.query(john).getAll());
System.out.println("==A company which name with ' beauty salon'=="+companyCache.query(primavera).getAll());
}
上面的代码与scanQuery方法非常相似。首先,我们检索Company缓存,并创建两个文本查询john和beauty saloon。然后使用返回Company列表并将结果打印到控制台的文本执行查询。
Step 4
使用以下命令编译并运行应用程序:
mvn clean install && java –jar target/textquery-runnable.jar textquery
你可以使用不同的搜索条件编辑文本查询应用程序。在正常的用例中,Ignite内置文本查询应该足以执行全文本搜索。
以下是Scan query和Text query完整的代码例子:
Ignite配置文件:/resources/example-ignite.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<bean id="ignite.cfg" class="org.apache.ignite.configuration.IgniteConfiguration">
<!-- Explicitly configure TCP discovery SPI to provide list of initial nodes. -->
<property name="discoverySpi">
<bean class="org.apache.ignite.spi.discovery.tcp.TcpDiscoverySpi">
<property name="ipFinder">
<bean class="org.apache.ignite.spi.discovery.tcp.ipfinder.vm.TcpDiscoveryVmIpFinder">
<property name="addresses">
<list>
<value>127.0.0.1:47500</value>
</list>
</property>
</bean>
</property>
</bean>
</property>
</bean>
</beans>
Ignite服务启动类com.mycookcode.bigData.ignite.App来完成缓存的查询:
package com.mycookcode.bigData.ignite;
import com.mycookcode.bigData.ignite.model.Company;
import org.apache.ignite.Ignite;
import org.apache.ignite.IgniteCache;
import org.apache.ignite.Ignition;
import org.apache.ignite.cache.CacheMode;
import org.apache.ignite.cache.query.QueryCursor;
import org.apache.ignite.cache.query.ScanQuery;
import org.apache.ignite.cache.query.TextQuery;
import org.apache.ignite.configuration.CacheConfiguration;
import org.apache.ignite.lang.IgniteBiTuple;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.Iterator;
import java.util.stream.Stream;
public class App
{
private static final String SCAN_QUERY = "scanquery";
private static final String TEXT_QUERY = "textquery";
//定义用来存储公司对象的分区缓存名称
private static final String COMPANY_CACHE_NAME = App.class.getSimpleName() + "-company";
public static void main( String[] args )throws Exception
{
try (Ignite ignite = Ignition.start("example-ignite.xml"))
{
CacheConfiguration<Long,Company> employeeCacheCfg = new CacheConfiguration<>(COMPANY_CACHE_NAME);
employeeCacheCfg.setCacheMode(CacheMode.PARTITIONED);
employeeCacheCfg.setIndexedTypes(Long.class, Company.class);
try(IgniteCache<Long,Company> employeeCache = ignite.createCache(employeeCacheCfg))
{
if(args.length <= 0)
{
System.out.println("Usages! java -jar .\\\\target\\\\cache-store-runnable.jar scanquery|textquery");
System.exit(0);
}
initialize();
if(args[0].equalsIgnoreCase(SCAN_QUERY))
{
scanQuery();
System.out.println("Scan query example finished.");
}else if (args[0].equalsIgnoreCase(TEXT_QUERY)) {
textQuery();
System.out.println("Text query example finished.");
}
}
}
}
private static void initialize()throws InterruptedException,IOException
{
IgniteCache<Long,Company> companyCache = Ignition.ignite().cache(COMPANY_CACHE_NAME);
//启动之前清空缓存
companyCache.clear();
try(Stream<String> lines = Files.lines(Paths.get("/data/USA_NY_email_addresses.csv"))
//Stream<String> lines = Files.lines(Paths.get(App.class.getClassLoader().getResources("USA_NY_email_addresses.csv").toString()))
)
{
lines.skip(1).map(s1 -> s1.split("\",\"")).map(s2 -> new Company(Long.valueOf(s2[0].replaceAll("\"", "")), s2[1], s2[2], s2[3], s2[4], s2[5], s2[6], s2[7], s2[8], s2[9], s2[10], s2[11], s2[12].replaceAll("\"", "")))
.forEach(r -> companyCache.put(r.getId(),r));
}catch (IOException e)
{
System.out.println(e.getMessage());
}
Thread.sleep(1000);
}
private static void textQuery()
{
IgniteCache<Long,Company> companyCache = Ignition.ignite().cache(COMPANY_CACHE_NAME);
TextQuery<Integer,Company> john = new TextQuery<>(Company.class,"John");
TextQuery<Integer, Company> primavera = new TextQuery<>(Company.class, "beauty saloon");
System.out.println("==So many companies with information about 'John'=="+companyCache.query(john).getAll());
System.out.println("==A company which name with ' beauty salon'=="+companyCache.query(primavera).getAll());
}
private static void scanQuery()
{
IgniteCache<Long,Company> companyCache = Ignition.ignite().cache(COMPANY_CACHE_NAME);
//查询所有城市“纽约”-纽约的公司
QueryCursor queryCursor = companyCache.query(new ScanQuery<Long,Company>((k,p) -> p.getCity().equalsIgnoreCase("NEW YORK")));
for (Iterator ite = queryCursor.iterator();ite.hasNext();)
{
IgniteBiTuple<Long,Company> company = (IgniteBiTuple<Long, Company>) ite.next();
System.out.println(company.getValue().getCompanyName());
}
queryCursor.close();
}
}
SQL queries
Apache Ignite提供了SqlQuery和SqlFieldsQuery API来支持针对缓存的SQL查询。SQL语法是完全支持ANSI-99,可以执行一个聚合函数,比如AVG()、COUNT()、分组或排序。当数据驻留在不同的缓存中时,Apache Ignite还包括用于查询内存数据的分布式SQL连接查询(并置和非并置)。与Hazelcast或Infinispan等内存厂商相比,支持ANSI-99 SQL查询是Apache Ignite的独特特性之一。
过去,针对大型数据集的分布式连接非常具有挑战性,因为在不同表或缓存中查找单个键的开销相对较大。因此,大多数NoSQL或内存缓存供应商不支持查询连接。在这种情况下,用户通过组合多个查询结果手动执行连接查询。然而,Apache Ignite以一种不同的方式解决了连接查询问题。在Ignite 1.7之前版本为了获得可靠的查询结果,只在本地数据上执行查询,数据应该放在同一个节点上。
然而,1.7或更高版本的Apache Ignite版本提供了一种分布式连接查询的新方法,名为非并置分布式连接查询,其中SQL连接查询不再需要数据并置。在交叉连接查询中,数据应该驻留在同一个节点上。否则,可能会得到不准确的查询结果。
缓存以两种方式分布:复制和分区。在复制模式下,所有节点都包含其主数据集和备份副本。在分区模式下,通过Ignite集群复制数据集。当使用Ignite集群的分区拓扑时,所有分布式连接的复杂性都会随之而来。在分区模式中,如果正在执行任何交叉连接查询,Apache Ignite就无法保证获得可靠的查询结果。
Apache Ignite还提供了Java注释,使SQL查询可以访问字段。此外,还可以使用相同的注释对字段进行索引,以便更快地查询。对于复杂的查询,Apache Ignite还提供了一个多字段索引以加速复杂条件下的查询。Apache Ignite还提供了用于SQL投影的Java API。使用SqlFieldsQuery,只能选择指定的字段,而不能选择整个对象。
有了Ignite SQL核心概念,就可以解决大多数SQL问题了。在本小节中主要讨论以下几点:
- 带有注释的投影和索引。
- 查询API。
- 并置,非并置分布式连接查询。
- 性能调优SQL查询。
Dataset
我们将要使用的数据集是来自Postsql数据库的Employee和Department实体。部门(dept)和员工(emp)实体的结构非常简单,它们之间是一对多的关系(见下图)。
Projection and indexing with annotations
首先,为了对缓存数据记录使用SQL查询,必须使实体字段对SQL查询可访问。可以通过以下两种方式实现:
- org.apache.ignite.cache.query.annotations.QuerySqlField
- org.apache.ignite.cache.QueryEntity
接下来的伪代码将显示@QuerySqlField注释的使用。
public class Employee implements Serializable {
private static final AtomicInteger GENERATED_ID = new AtomicInteger(); @QuerySqlField
private Integer empno;
@QuerySqlField
private String ename;
@QueryTextField
private LocalDate hiredate;
private Integer sal;
@QuerySqlField
private Integer deptno;
// rest of the code is omitted
}
让我们详细看看上面的代码。通过使用@QuerySqlField注释,我们已经允许SQL查询使用empno、ename、hiredate和sal属性。注意,SQL查询不启用属性或字段sal。每个实体都有两个预定义的字段:_key和_val,它们表示到整个键的链接和缓存数据记录的值。当数据记录很简单并且想过滤它的数值时,这样做是很有用的。例如执行一条查询语句:
SELECT * FROM Employee WHERE _key = 100
假设在Ignite中有以下缓存。
IgniteCache<Integer, String> myCache = Ignition.ignite().cache(CACHE_NAME);
还可以执行Select * from myCache _key=101这样的查询。
现在,通过我们的Employee实体,我们可以执行以下任何一个SQL查询。
select e.ename ,e.sal, m.ename, m.sal from Employee e, (select ename, empno, sal from Empl\
oyee) m where e.mgr = m.empno and e.sal > m.sal
如果希望执行一些查询,在控制台中运行以下命令。
mvn clean install && java –jar ./target/sql-query-employees-runnable.jar
还可以使用@QuerySqlField注释对字段值进行索引,以加速查询执行速度。要创建单个列索引,可以使用@QuerySqlField(index = true)注释字段。将为实体字段创建索引值。让我们看一个例子,如下:
public class Employee implements Serializable {
private static final AtomicInteger GENERATED_ID = new AtomicInteger(); @QuerySqlField(index = true)
private Integer empno;
@QuerySqlField
private String ename;
@QueryTextField
private String job;
@QuerySqlField
private Integer mgr;
@QuerySqlField
private LocalDate hiredate;
@QuerySqlField
private Integer sal;
@QuerySqlField(index = true)
private Integer deptno;
// rest of the code is ommitted
}
在上述代码片段中,我们为字段empno和deptno创建了索引。
还可以将一组中的一个或多个索引组合在一起,以使用复杂条件加速查询执行速度。在这种情况下,必须使用@QuerySqlField.Group注释 。可以放置多个@QuerySqlField。如果希望字段参与多个组索引,可以将注释分组到orderedGroups。
public class Employee implements Serializable {
@QuerySqlField(orderedGroups={@QuerySqlField.Group(
name = "hiredate_salary_idx", order = 0, descending = true)})
private LocalDate hireDate;
@QuerySqlField(index = true, orderedGroups={@QuerySqlField.Group(
name = " hiredate _salary_idx", order = 3)})
private Integer sal;
}
使用上述配置,可以像这样执行SQL查询
select e.ename ,e.sal, m.ename, m.sal from Employee e, (select ename, empno, sal from Empl\
oyee) m where e.mgr = m.empno and (e.sal > m.sal and e.hiredate >=’DATE_TIME’);
Query API
Apache Ignite提供了两个不同的查询API来对缓存数据记录执行SQL查询。
- org.apache.ignite.cache.query.SqlQuery:该类总是返回整个键和对象的值。它与Hibernate HQL非常相似。例如,可以运行下面的查询来获得所有雇员的工资在1000到2000之间的数据。
SqlQuery qry = new SqlQuery<>(Employee.class, "sal > 1000 and sal <= 2000");
- org.apache.ignite.cache.query.SqlFieldsQuery:该查询可以基于SQL select子句返回特定的数据字段。可以选择只选择特定的字段,以最小化网络和序列化开销。对于要执行一些聚合查询时,也是非常有用的。例如:
SqlFieldsQuery qry = new SqlFieldsQuery(,"select avg(e.sal), d.dname " +,"from Employee e, \"" + DEPARTMENT_CACHE_NAME + "\".Department d " +,"where e.deptno = d.deptno " +,"group by d.dname " +,"having avg(e.sal) > ?");
Collocated distributed Joins(并置分布式连接查询)
到目前为止,我们讨论了Apache Ignite的缓存拓扑。让我们深入探讨另一个重要的主题:数据并置。在分区模式下,数据集将被分区并位于不同的Ignite节点中。这意味着与指定Department相关的Employee可以位于不同的节点,反之亦然。在运行时,如果我们想要执行任何业务逻辑,我们需要找出与他们Department相关的Employee将非常耗时。为了解决这个问题,Apache Ignite提供了affinity key概念,其中相关数据集可以位于同一个节点上。例如,通过Employee id和Department id的affinity键AffinityKey(int empNo, int deptNo), Ignite将确保所有Employee的数据与他们的Department数据驻留在同一个节点上。在一个下面的示例中解释所有细节。
Step 1
将Department Java类添加到项目中,如下所示:
public class Department implements Serializable {
private static final AtomicInteger GENERATED_ID = new AtomicInteger();
@QuerySqlField(index = true)
private Integer deptno;
@QuerySqlField
private String dname;
@QuerySqlField
private String loc;
public Department(String dname, String loc) {
this.deptno = GENERATED_ID.incrementAndGet();
this.dname = dname;
this.loc = loc;
}
// setter and getter are omitted here
}
在上面的Java类中,deptno是Department ID,该值将用作缓存中的缓存键。我们还将为Department entity提供一个单独的缓存。我们可以初始化一个Department的缓存,并将Department实体存储如下:
IgniteCache<Integer, Department> deptCache = Ignition.ignite().cache(DEPARTMENT_CACHE_NAME);
// 创建Department实例
Department dept1 = new Department("Accounting", "New York");
deptCache.put(dept1.getDeptno(), dept1);
还要注意,键值将在SQL执行时用作主键。
接下来,为Employee实体添加另一个Java类,如下所示:
public class Employee implements Serializable {
private static final AtomicInteger GENERATED_ID = new AtomicInteger();
@QuerySqlField(index = true)
private Integer empno;
@QuerySqlField
private String ename;
@QueryTextField
private String job;
@QuerySqlField
private Integer mgr;
@QuerySqlField
private LocalDate hiredate;
@QuerySqlField
private Integer sal;
@QuerySqlField(index = true)
private Integer deptno;
private transient EmployeeKey key; //Affinity employee key
public EmployeeKey getKey()
{
if (key == null)
{
key = new EmployeeKey(empno, deptno);
}
return key;
}
}
除了字段deptno和key之外,大部分都与Department类非常相似。字段deptno识别Employee所在的部门,带有EmployeeKey类型的字段键为AffinityKey。让我们仔细看看它的定义。
public class EmployeeKey implements Serializable {
private final int empNo;
@AffinityKeyMapped
private final int deptNo;
public EmployeeKey(int empNo, int deptNo)
{
this.empNo = empNo;
this.deptNo = deptNo;
}
}
与empno不同,key(类型EmployeeKey)将是缓存键。EmployeeKey类是映射到Employee id和Department id的键,Department id (deptno)将是Employee的关联键。下面的代码将用于在缓存中添加Employee。
IgniteCache<EmployeeKey, Employee> employeeCache = Ignition.ignite().cache(EMPLOYEE_CACHE_NAME);
// Employees
Employee emp1 = new Employee("King", dept1, "President", null, localDateOf("17-11-1981"), 5000);
// 注意,我们为Employee对象使用自定义关联键
// 确保所有Employee都与所在的Department分配到相同的节点上。
employeeCache.put(emp1.getKey(), emp1);
因此,Employee King将与Department Accounting位于同一个节点上。现在,如果我们从SqlQueryEmployees类执行sqlFieldsQueryWithJoin方法,应该运行以下SQL查询:
select e.ename, d.dname from Employee e, departments.Department d where e.deptno = d.deptno;
还可以从命令行运行SqlQueryEmployees类,如下所示:
java –jar ./target/sql-query-employees-runnable.jar
该方法的输出如下:
以上SQL查询返回属于其Department的所有Employee。下面的流程图将解释在执行SQL时的工作过程。
根据上图详细的执行流程如下:
- PhaseQ:Ignite客户端节点初始化SQL查询并将SQL查询发送到所有节点。
- Phase E(Q):接收SQL查询的所有Ignite节点都对本地数据运行查询。到目前为止,我们使用的是关联键,本地数据将包含Employee及其所在Department。
- Phase R1-3:所有节点都将它们的执行结果集发送到Ignite客户端节点。
- PhaseR:Ignite客户端节点将以reducer的形式出现,并将所有结果集中在一个结果集中。在我们的示例中,它将把结果打印到控制台。
注意,在常规SQL中,缓存的名称充当模式名称。这意味着所有缓存都可以通过引号中的缓存名称引用。在上面的SQL查询中,Employee是默认的schema名,我们显式地为Department定义缓存名。
Non-collocated distributed joins(非并置分布式连接查询)
在现实中,不可能总是将所有数据放在同一个节点中。大多数情况下,当您通过一个特别的查询对热门数据进行分析时。在这种情况下,从版本1.7.0或更高版本开始,您可以在非配置缓存上使用非并置的分布式连接。通过设置sqlquery.setDistributedJoins (true)参数,可以为指定的查询启用非并置SQL连接。当启用此参数时,查询映射到的节点将通过发送广播请求或单播请求,从远程节点请求本地没有缓存的数据。执行流程如下图所示。
使用这种方法,我们可以使用Employee的empno字段作为缓存键,而不是use - eeKey(empno, deptno)关联键。因此,我们应该对代码进行如下修改:
// Employees
Employee emp1 = new Employee("King", dept1, "President", null, localDateOf("17-11-1981"), 5000);
employeeCache.put(emp1.getEmpno(), emp1);
现在我们可以执行以下查询:
select e.ename, d.dname from Employee e, departments.Department d where e.deptno = d.deptno
即使经过以上的修改,我们仍然会得到一个完整的结果,不管Employee已经不再与其Department数据进行并置。在这种情况下,广播请求将从节点发送到所有其他节点。如果你想使用单播请求,我们必须稍微改变我们的SQL查询如下:
select e.ename, d.dname from Employee e, departments.Department d where e.deptno = d._key
注意,我们在SQL连接中使用_key预定义索引而不是d.deptno字段。让我们详细信息看下上图中的执行流程。
Phase Q:Ignite客户端节点初始化SQL查询并将SQL查询发送到所有节点。
Phase E(Q): 接收SQL查询的所有Ignite节点都对本地数据运行查询。
Phase D(Q):如果任何数据在本地缺失,它将通过以下方式从远程节点请求多播或单播请求。
Phase R1-3:所有节点都将它们的执行结果集发送到Ignite客户端节点。
Phase R: Ignite客户端节点将以reducer的形式出现,并将所有结果集中在一个结果集中。在我们的示例中,它将把结果打印到控制台。
以下是Sql query完整的代码样例:
Ignite配置文件:/resources/example-ignite.xml
<?xml version="1.0" encoding="UTF-8"?>
<!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<!--
Ignite configuration with all defaults and enabled p2p deployment and enabled events.
Used for testing IgniteSink running Ignite in a client mode.
-->
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<bean id="ignite.cfg" class="org.apache.ignite.configuration.IgniteConfiguration">
<!-- Explicitly configure TCP discovery SPI to provide list of initial nodes. -->
<property name="discoverySpi">
<bean class="org.apache.ignite.spi.discovery.tcp.TcpDiscoverySpi">
<property name="ipFinder">
<bean class="org.apache.ignite.spi.discovery.tcp.ipfinder.vm.TcpDiscoveryVmIpFinder">
<property name="addresses">
<list>
<value>127.0.0.1:47500</value>
</list>
</property>
</bean>
</property>
</bean>
</property>
</bean>
</beans>
Ignite 日志配置文件:/resources/logback.xml
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<!-- encoders are assigned the type
ch.qos.logback.classic.encoder.PatternLayoutEncoder by default -->
<encoder>
<pattern>%d{HH:mm:ss.SSS} [%thread] %-5level %logger{5} - %msg%n</pattern>
</encoder>
</appender>
<logger name="com.mycookcode.bigData.ignite" level="INFO" additivity="false">
<appender-ref ref="STDOUT"/>
</logger>
<!-- Strictly speaking, the level attribute is not necessary since -->
<!-- the level of the root level is set to DEBUG by default. -->
<root level="DEBUG">
<appender-ref ref="STDOUT"/>
</root>
</configuration>
项目的pom.xml依赖配置文件:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.mycookcode.bigData.ignite</groupId>
<artifactId>ignite-sqlquery</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>ignite-sqlquery</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<ignite.version>2.6.0</ignite.version>
</properties>
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-core</artifactId>
<version>${ignite.version}</version>
</dependency>
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-indexing</artifactId>
<version>${ignite.version}</version>
</dependency>
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-spring</artifactId>
<version>${ignite.version}</version>
</dependency>
<dependency>
<groupId>org.apache.ignite</groupId>
<artifactId>ignite-slf4j</artifactId>
<version>${ignite.version}</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.25</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.3</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-core</artifactId>
<version>1.2.3</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.3</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<groupId>com.jolira</groupId>
<artifactId>onejar-maven-plugin</artifactId>
<version>1.4.4</version>
<executions>
<execution>
<id>build-query</id>
<configuration>
<mainClass>com.mycookcode.bigData.ignite.App</mainClass>
<attachToBuild>true</attachToBuild>
<classifier>onejar</classifier>
<filename>sql-query-employees-runnable.jar</filename>
</configuration>
<goals>
<goal>one-jar</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
缓存的实体类文件:
com.mycookcode.bigData.ignite.model.Department:
package com.mycookcode.bigData.ignite.model;
import org.apache.ignite.cache.query.annotations.QuerySqlField;
import java.io.Serializable;
import java.util.Objects;
import java.util.concurrent.atomic.AtomicInteger;
public class Department implements Serializable {
private static final AtomicInteger GENERATED_ID = new AtomicInteger();
@QuerySqlField(index = true)
private Integer deptno;
@QuerySqlField
private String dname;
@QuerySqlField
private String loc;
public Department(String dname,String loc)
{
this.deptno = GENERATED_ID.incrementAndGet();
this.dname = dname;
this.loc = loc;
}
public Integer getDeptno() {
return deptno;
}
public void setDeptno(Integer deptno) {
this.deptno = deptno;
}
public String getDname() {
return dname;
}
public void setDname(String dname) {
this.dname = dname;
}
public String getLoc() {
return loc;
}
public void setLoc(String loc) {
this.loc = loc;
}
@Override public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
Department that = (Department)o;
return Objects.equals(deptno, that.deptno) &&
Objects.equals(dname, that.dname) &&
Objects.equals(loc, that.loc);
}
@Override
public int hashCode() {
return Objects.hash(deptno, dname, loc);
}
@Override public String toString() {
return "Department[" +
"deptno=" + deptno +
", dname='" + dname + '\'' +
", loc='" + loc + '\'' +
']';
}
}
com.mycookcode.bigData.ignite.model.EmployeeKey:
package com.mycookcode.bigData.ignite.model;
import org.apache.ignite.cache.affinity.AffinityKeyMapped;
import java.io.Serializable;
import java.util.Objects;
public class EmployeeKey implements Serializable{
private final int empNo;
@AffinityKeyMapped
private final int deptNo;
public EmployeeKey(int empNo, int deptNo) {
this.empNo = empNo;
this.deptNo = deptNo;
}
public int getEmpNo() {
return empNo;
}
public int getDeptNo() {
return deptNo;
}
@Override
public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
EmployeeKey key = (EmployeeKey)o;
return empNo == key.empNo &&
deptNo == key.deptNo;
}
@Override
public int hashCode() {
return Objects.hash(empNo, deptNo);
}
@Override
public String toString() {
return "EmployeeKey[" +
"empNo=" + empNo +
", deptNo=" + deptNo +
']';
}
}
com.mycookcode.bigData.ignite.model.Employee:
package com.mycookcode.bigData.ignite.model;
import org.apache.ignite.cache.query.annotations.QuerySqlField;
import org.apache.ignite.cache.query.annotations.QueryTextField;
import java.io.Serializable;
import java.time.LocalDate;
import java.util.concurrent.atomic.AtomicInteger;
public class Employee implements Serializable{
private static final AtomicInteger GENERATED_ID = new AtomicInteger();
@QuerySqlField(index = true)
private Integer empno;
@QuerySqlField
private String ename;
@QueryTextField
private String job;
@QuerySqlField
private Integer mgr;
@QuerySqlField
private LocalDate hiredate;
@QuerySqlField
private Integer sal;
@QuerySqlField(index = true)
private Integer deptno;
private transient EmployeeKey key;
public Employee(String ename, Department dept, String job, Integer mgr, LocalDate hiredate, Integer sal) {
this.empno = GENERATED_ID.incrementAndGet();
this.ename = ename;
this.job = job;
this.mgr = mgr;
this.hiredate = hiredate;
this.sal = sal;
this.deptno = dept.getDeptno();
}
public Integer getEmpno() {
return empno;
}
public void setEmpno(Integer empno) {
this.empno = empno;
}
public String getEname() {
return ename;
}
public void setEname(String ename) {
this.ename = ename;
}
public String getJob() {
return job;
}
public void setJob(String job) {
this.job = job;
}
public Integer getMgr() {
return mgr;
}
public void setMgr(Integer mgr) {
this.mgr = mgr;
}
public LocalDate getHiredate() {
return hiredate;
}
public void setHiredate(LocalDate hiredate) {
this.hiredate = hiredate;
}
public Integer getSal() {
return sal;
}
public void setSal(Integer sal) {
this.sal = sal;
}
public Integer getDeptno() {
return deptno;
}
public void setDeptno(Integer deptno) {
this.deptno = deptno;
}
//Affinity employee key
public EmployeeKey getKey() {
if (key == null) {
key = new EmployeeKey(empno, deptno);
}
return key;
}
@Override public String toString() {
return "Employee[" +
" ename='" + ename + '\'' +
", job='" + job + '\'' +
", mgr=" + mgr +
", hiredate=" + hiredate +
", sal=" + sal +
']';
}
}
Ignite服务启动类com.mycookcode.bigData.ignite.App,实现Sql query查询服务:
package com.mycookcode.bigData.ignite;
import com.mycookcode.bigData.ignite.model.Department;
import com.mycookcode.bigData.ignite.model.Employee;
import com.mycookcode.bigData.ignite.model.EmployeeKey;
import org.apache.ignite.Ignite;
import org.apache.ignite.IgniteCache;
import org.apache.ignite.Ignition;
import org.apache.ignite.cache.CacheMode;
import org.apache.ignite.cache.query.SqlFieldsQuery;
import org.apache.ignite.cache.query.SqlQuery;
import org.apache.ignite.configuration.CacheConfiguration;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.math.BigDecimal;
import java.time.LocalDate;
import java.time.format.DateTimeFormatter;
import java.util.Collection;
import java.util.List;
/**
* Hello world!
*
*/
public class App {
private static DateTimeFormatter formatter = DateTimeFormatter.ofPattern("dd-MM-yyyy");
private static Logger logger = LoggerFactory.getLogger(App.class);
private static final String DEPARTMENT_CACHE_NAME = App.class.getSimpleName() + "-departments";
private static final String EMPLOYEE_CACHE_NAME = App.class.getSimpleName() + "-employees";
public static void main(String[] args) throws Exception {
Ignite ignite = Ignition.start("example-ignite.xml");
logger.info("Start. Sql query example.");
CacheConfiguration<Integer, Department> deptCacheCfg = new CacheConfiguration<>(DEPARTMENT_CACHE_NAME);
deptCacheCfg.setCacheMode(CacheMode.REPLICATED);
deptCacheCfg.setIndexedTypes(Integer.class, Department.class);
CacheConfiguration<EmployeeKey, Employee> employeeCacheCfg = new CacheConfiguration<>(EMPLOYEE_CACHE_NAME);
employeeCacheCfg.setCacheMode(CacheMode.PARTITIONED);
employeeCacheCfg.setIndexedTypes(EmployeeKey.class, Employee.class);
try (
IgniteCache<Integer, Department> deptCache = ignite.createCache(deptCacheCfg);
IgniteCache<EmployeeKey, Employee> employeeCache = ignite.createCache(employeeCacheCfg)
) {
initialize();
sqlQuery();
sqlQueryWithJoin();
sqlQueryEmployeesWithSalHigherManager();
sqlFieldsQuery();
sqlFieldsQueryWithJoin();
aggregateQuery();
groupByQuery();
}
}
private static void initialize() throws InterruptedException {
IgniteCache<Integer, Department> deptCache = Ignition.ignite().cache(DEPARTMENT_CACHE_NAME);
IgniteCache<EmployeeKey, Employee> employeeCache = Ignition.ignite().cache(EMPLOYEE_CACHE_NAME);
//启动之前清除缓存
deptCache.clear();
employeeCache.clear();
//Departments数据初始化
Department dept1 = new Department("Accounting", "New York");
Department dept2 = new Department("Research", "Dallas");
Department dept3 = new Department("Sales", "Chicago");
Department dept4 = new Department("Operations", "Boston");
//Employees数据初始化
Employee emp1 = new Employee("King", dept1, "President", null, localDateOf("17-11-1981"), 5000);
Employee emp2 = new Employee("Blake", dept3, "Manager", emp1.getEmpno(), localDateOf("01-05-1981"), 2850);
Employee emp3 = new Employee("Clark", dept1, "Manager", emp1.getEmpno(), localDateOf("09-06-1981"), 2450);
Employee emp4 = new Employee("Jones", dept2, "Manager", emp1.getEmpno(), localDateOf("02-04-1981"), 2975);
Employee emp5 = new Employee("Scott", dept2, "Analyst", emp4.getEmpno(), localDateOf("13-07-1987").minusDays(85), 3000);
Employee emp6 = new Employee("Ford", dept2, "Analyst", emp4.getEmpno(), localDateOf("03-12-1981"), 3000);
Employee emp7 = new Employee("Smith", dept2, "Clerk", emp6.getEmpno(), localDateOf("17-12-1980"), 800);
Employee emp8 = new Employee("Allen", dept3, "Salesman", emp2.getEmpno(), localDateOf("20-02-1981"), 1600);
Employee emp9 = new Employee("Ward", dept3, "Salesman", emp2.getEmpno(), localDateOf("22-02-1981"), 1250);
Employee emp10 = new Employee("Martin", dept3, "Salesman", emp2.getEmpno(), localDateOf("28-09-1981"), 1250);
Employee emp11 = new Employee("Turner", dept3, "Salesman", emp2.getEmpno(), localDateOf("08-09-1981"), 1500);
Employee emp12 = new Employee("Adams", dept2, "Clerk", emp5.getEmpno(), localDateOf("13-07-1987").minusDays(51), 1100);
Employee emp13 = new Employee("James", dept3, "Clerk", emp2.getEmpno(), localDateOf("03-12-1981"), 950);
Employee emp14 = new Employee("Miller", dept1, "Clerk", emp3.getEmpno(), localDateOf("23-01-1982"), 1300);
deptCache.put(dept1.getDeptno(), dept1);
deptCache.put(dept2.getDeptno(), dept2);
deptCache.put(dept3.getDeptno(), dept3);
deptCache.put(dept4.getDeptno(), dept4);
employeeCache.put(emp1.getKey(), emp1);
employeeCache.put(emp2.getKey(), emp2);
employeeCache.put(emp3.getKey(), emp3);
employeeCache.put(emp4.getKey(), emp4);
employeeCache.put(emp5.getKey(), emp5);
employeeCache.put(emp6.getKey(), emp6);
employeeCache.put(emp7.getKey(), emp7);
employeeCache.put(emp8.getKey(), emp8);
employeeCache.put(emp9.getKey(), emp9);
employeeCache.put(emp10.getKey(), emp10);
employeeCache.put(emp11.getKey(), emp11);
employeeCache.put(emp12.getKey(), emp12);
employeeCache.put(emp13.getKey(), emp13);
employeeCache.put(emp14.getKey(), emp14);
Thread.sleep(1000);
}
/**
* @param
* @return
*/
private static LocalDate localDateOf(String parseDateText) {
return LocalDate.parse(parseDateText, formatter);
}
/**
* 以薪水范围为查询条件检索数据
*/
private static void sqlQuery() {
IgniteCache<EmployeeKey, Employee> cache = Ignition.ignite().cache(EMPLOYEE_CACHE_NAME);
SqlQuery<EmployeeKey, Employee> qry = new SqlQuery<EmployeeKey, Employee>(Employee.class, "sal > ? and sal <= ?");
logDecorated("==Employee with salaries between 0 and 1000==", cache.query(qry.setArgs(0, 1000)).getAll());
logDecorated("==Employee with salaries between 1000 and 2000==", cache.query(qry.setArgs(1000, 2000)).getAll());
logDecorated("==Employee with salaries greater than 2000==", cache.query(qry.setArgs(2000, Integer.MAX_VALUE)).getAll());
}
/**
* 基于为特定部门工作的所有员工的SQL查询示例。
*/
private static void sqlQueryWithJoin() {
IgniteCache<EmployeeKey, Employee> cache = Ignition.ignite().cache(EMPLOYEE_CACHE_NAME);
SqlQuery<EmployeeKey, Employee> qry = new SqlQuery<>(Employee.class,
"from Employee, \"" + DEPARTMENT_CACHE_NAME + "\".Department " +
"where Employee.deptno = Department.deptno " +
"and lower(Department.dname) = lower(?)");
logDecorated("==Following department 'Accounting' have employees (SQL join)==", cache.query(qry.setArgs("Accounting")).getAll());
logDecorated("==Following department 'Sales' have employees (SQL join)==", cache.query(qry.setArgs("Sales")).getAll());
}
/**
* 输出所有工资高于直属上级管理人员的员工
*/
private static void sqlQueryEmployeesWithSalHigherManager() {
IgniteCache<EmployeeKey, Employee> cache = Ignition.ignite().cache(EMPLOYEE_CACHE_NAME);
SqlFieldsQuery qry = new SqlFieldsQuery("select e.ename ,e.sal,m.ename,m.sal from Employee e, " +
"(select ename,empno,sal from Employee) m " +
"where e.mgr = m.empno and e.sal > m.sal");
log("==All employees those salary bigger than their direct manager==");
logDecorated("||Employee||Emp.Salary||Manager||Mgr.Salary||", cache.query(qry).getAll());
}
/**
* 基于sql的字段查询的示例,该查询只返回必需字段,而不是整个键-值对
*/
private static void sqlFieldsQuery() {
IgniteCache<?, ?> cache = Ignition.ignite().cache(EMPLOYEE_CACHE_NAME);
SqlFieldsQuery qry = new SqlFieldsQuery("select ename from Employee");
Collection<List<?>> res = cache.query(qry).getAll();
log("==Names of all employees==", res);
}
/**
* 基于sql的字段查询的示例,该查询只返回必需字段,而不是整个键-值对。
*/
private static void sqlFieldsQueryWithJoin(){
IgniteCache<?, ?> cache = Ignition.ignite().cache(EMPLOYEE_CACHE_NAME);
SqlFieldsQuery qry = new SqlFieldsQuery(
"select e.ename, d.dname " +
"from Employee e, \"" + DEPARTMENT_CACHE_NAME + "\".Department d " +
"where e.deptno = d.deptno");
Collection<List<?>> res = cache.query(qry).getAll();
logDecorated("==Names of all employees and departments they belong to (SQL join)==", res);
}
/**
* 基于sql的字段查询的示例,该查询只返回必需字段,而不是整个键-值对。
*/
private static void aggregateQuery()
{
IgniteCache<?, ?> cache = Ignition.ignite().cache(EMPLOYEE_CACHE_NAME);
SqlFieldsQuery qry = new SqlFieldsQuery("select sum(sal), count(sal) from Employee");
Collection<List<?>> res = cache.query(qry).getAll();
double sum = 0;
long cnt = 0;
for (List<?> row : res)
{
if (row.get(0) != null) {
sum += ((BigDecimal)row.get(0)).doubleValue();
cnt += (Long)row.get(1);
}
}
log("==Average employee salary (aggregation query)==");
log("\t" + (cnt > 0 ? (sum / cnt) : "n/a"));
}
/**
* 基于sql的字段查询的示例,该查询只返回必需字段,而不是整个键-值对。
*/
private static void groupByQuery()
{
IgniteCache<?, ?> cache = Ignition.ignite().cache(EMPLOYEE_CACHE_NAME);
SqlFieldsQuery qry = new SqlFieldsQuery(
"select avg(e.sal), d.dname " +
"from Employee e, \"" + DEPARTMENT_CACHE_NAME + "\".Department d " +
"where e.deptno = d.deptno " +
"group by d.dname " +
"having avg(e.sal) > ?");
logDecorated("==Average salaries per Department (group-by query)==", cache.query(qry.setArgs(500)).getAll());
}
/**
* Prints message to logger.
*
* @param msg String.
*/
private static void log(String msg) {
logger.info("\t" + msg);
}
/**
* Prints message to logger.
*
* @param msg String.
*/
private static void log(String msg, Iterable<?> col) {
logger.info("\t" + msg);
col.forEach(c -> logger.info("\t\t" + c));
}
/**
* Prints message and resultset to logger.
*
* @param msg String.
* @param col Iterable
*/
private static void logDecorated(String msg, Iterable<?> col) {
logger.info("\t" + msg);
col.forEach(c -> logger.info("\t\t" + c));
}
}