R语言读取大量文件夹并计算其中遥感影像平均值的方法

  本文介绍基于R语言中的raster包,遍历读取多个文件夹下的多张栅格遥感影像,分别批量对每一个文件夹中的多个栅格图像计算平均值,并将所得各个结果栅格分别加以保存的方法。

  其中,本文是用R语言来进行操作的;如果希望基于Python语言实现类似的平均值求取操作,大家可以参考ArcPy批量对多景多时相栅格图像逐像元计算像素平均值https://www.jianshu.com/p/45c5b58eb1df)与Python whitebox对多时相栅格图像忽略无效值NoData求取各像元平均https://www.jianshu.com/p/1f94e652fe9d)这两篇文章。

  首先,来看一下本文所需实现的需求。如下图所示,现有多个文件夹,其中每一个文件夹内部都含有大量的栅格遥感影像。

  其中,上图中的每一个文件夹的命名都是以遥感影像的分幅条带号为依据的。例如,打开第一个名为47RMN的文件夹,其中均为条带号为47RMN(即同一空间范围)、不同成像时间的遥感影像,如下图所示;其中,紫色框内的遥感影像文件名即可看出,这些图像是同一条带号不同时间的遥感影像数据。

  我们要做的,就是分别对每一个文件夹中的全部遥感影像计算平均值,从而得到不同条带号遥感影像的平均值;最终我们将得到多张结果图像,每一景结果图像就是这一条带号不同成像时间对应的遥感影像的平均值。同时为了方便区分,我们需要将每一景结果图像文件的文件名设置为与条带号有关的内容。

  明确了需求,我们即可开始代码的撰写。本文所用到的代码如下所示。

library(raster)
result_path <- r"(E:\02_Project\01_Chlorophyll\Select\Result)"
tif_folder <- list.files(path = r"(E:\02_Project\01_Chlorophyll\Select)", pattern = NULL, all.files = FALSE, full.names = TRUE)
for (folder in tif_folder){
  folder_name <- substr(folder, nchar(folder) - 4, nchar(folder))
  tif_file_name <- list.files(path = folder, pattern = ".tif$", full.names = TRUE, ignore.case = TRUE)
  tif_file_all <- stack(tif_file_name)
  NAvalue(tif_file_all) <- -10000
  tif_mean <- calc(tif_file_all, fun = mean, na.rm = TRUE)
  tif_mean_new <- tif_mean / 100
  # plot(tif_mean_new)
  result_file_name <- file.path(result_path, paste(folder_name, "_mean.tif", sep = ""))
  rf <- writeRaster(tif_mean_new, filename = result_file_name, overwrite = TRUE)
  cat(folder_name, "is completed!", "\n")
}

  首先,需要通过library(raster)代码,导入本文所需的R语言raster包;关于这一包的配置,大家可以参考R语言读取栅格遥感影像数据的方法https://www.jianshu.com/p/675f2edb16c3)。接下来,我们需要指定结果存放的路径,并将其放入变量result_path中。

  接下来,我们通过list.files()函数,将包含有各个条带号的小文件夹大文件夹(也就是本文开头第一张图所示的文件夹)加以遍历,将每一个小文件夹的路径存入tif_folder。执行上述前3行代码后,得到的tif_folder结果如下图所示。

  可以看到,tif_folder是一个字符串,其中每一个元素都是每一个小文件夹的路径。

  接下来的for循环,就是对tif_folder加以遍历,即对每一个小文件夹进行操作。其中,我们首先通过substr()函数,获取当前操作的小文件夹名称,并将其存放于folder_name中;随后,对当前对应的小文件夹加以遍历,取出其中的全部遥感影像文件,并存放于tif_file_name;接下来,就是读取全部遥感影像,并计算其平均值;这里具体的代码解释大家可以参考文章R语言批量计算大量栅格图像平均值、标准差https://www.jianshu.com/p/309c1beb656c)。此外需要注意的是,由于我这里每一景遥感影像原本没有专门设置NoData值,而是用-10000作为其NoData值,因此需要通过NAvalue(tif_file_all) <- -10000这句代码,将值为-10000的像元作为NoData值的像元,防止后期计算平均值时对结果加以干扰。

  接下来,我们通过file.path()函数配置一下输出结果的路径——其中,结果遥感影像文件的名称就可以直接以其所对应的条带号来设置,并在条带号后添加一个_mean后缀,表明这个是平均值的结果图像;但此外,这个仅仅是文件的名字,还需要将文件名与路径拼接在一起,才可以成为完整的保存路径,因此需要用到file.path()函数。最后,将结果图像通过writeRaster()函数加以保存即可,这句代码的解释大家同样参考R语言批量计算大量栅格图像平均值、标准差https://www.jianshu.com/p/309c1beb656c)这篇文章即可。

  最后,由于我们要处理的文件夹比较多,因此可以通过cat()函数输出一下当前代码的运行进度。

  运行上述代码,我们将在指定的结果保存路径中看到每一个条带号对应的平均值结果图像,如下图所示。

  至此,大功告成。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容