R语言批量计算大量栅格图像平均值、标准差

  本文介绍基于R语言中的raster包,批量读取多张栅格图像,对多个栅格图像计算平均值标准差,并将所得新的栅格结果图像保存的方法。

  在文章R语言读取栅格遥感影像数据的方法https://www.jianshu.com/p/675f2edb16c3)中,我们介绍了基于R语言raster包,对单张或多张栅格图像加以平均值标准差计算的方法;但这一篇文章中的标准差计算方法仅仅可以对一张栅格图像的全部像元加以计算,即标准差计算结果是一个具体的数值,而不是一景结果影像;无法对多张、多时相的栅格图像进行计算。本文就介绍另一种方法,可以对多个时相的大量栅格影像加以逐像元平均值、标准差的计算,从而使得最终的结果是一景表示各个像元在全部时相的图像中的平均值或标准差的图像

  首先,我们按照文章R语言读取栅格遥感影像数据的方法https://www.jianshu.com/p/675f2edb16c3)中提到的方法,配置、加载raster包,并通过stack()函数读取同一文件夹下的全部栅格图像,具体代码如下所示。其中,代码的含义我们在上述这一篇文章中已经加以介绍,这里就不再赘述。

library(raster)
tif_file_path <- list.files(r"(E:\02_Project\01_Chlorophyll\LCC_SC_2020\SD)", pattern = ".tif$", full.names = TRUE, ignore.case = TRUE)
tif_file_all <- stack(tif_file_path)

  运行上述代码,可以看到已经得到了RasterStack格式的结果数据,如下图所示。

  接下来,我们通过calc()函数,对多时相栅格遥感影像数据加以计算;其中,其第一个参数tif_file_all就是需要加以计算的多个栅格图像,而第二个参数fun = sd表示我们需要计算标准差;如果我们需要计算平均值,那么就将第二个参数修改为fun = mean即可,我们这里就以标准差为例介绍后续的操作。当然,前述提到的文章R语言读取栅格遥感影像数据的方法https://www.jianshu.com/p/675f2edb16c3)中的方法也是可以对多个栅格图像计算平均值的。

tif_sd <- calc(tif_file_all, fun = sd)
plot(tif_sd)

  此外,上述代码在calc()函数运行时,若某一空间位置上的像元多张栅格遥感影像中,存在至少一个无效值(NoData值),则这一像元在最终的结果图像中同样为无效值;若希望忽略无效值的这一影响,可以将上述第一句代码修改为如下格式。其中,na.rm = TRUE就表示若某一景栅格遥感影像中某像元为无效值,则忽略这一景影像中的这一个像元。

tif_sd <- calc(tif_file_all, fun = sd, na.rm = TRUE)

  运行calc()函数后,我们可以通过plot()函数将结果图像绘制出来,如下图所示。

  上图即为多个栅格图像的像元数值时间序列依次计算标准差所得的结果。

  此外,由于我这里的栅格像元数据实际表达的数值之间有一个缩放系数0.01,因此通过下述代码将其像元值恢复为实际含义的数值。

tif_sd_new <- tif_sd / 100
plot(tif_sd_new)

  随后,重新绘制结果图;确认无误后,即可依据writeRaster()函数,通过如下代码保存我们刚刚得到的标准差结果栅格图像。

rf <- writeRaster(tif_sd_new, filename = r"(E:\02_Project\01_Chlorophyll\LCC_SC_2020\SD\LCC_SD.tif)", overwrite = TRUE)

  运行代码后,如下图所示。其中,writeRaster()函数的第一个参数表示我们将要保存的栅格数据,第二个参数表示保存栅格文件的路径与名称,第三个参数表示,如果第二个参数指定的路径与名称已经有文件存在了,是否直接对其加以覆盖。

  随后,我们即可在指定的路径下找到我们刚刚计算得到的多个栅格图像的标准差结果。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,904评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,581评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,527评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,463评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,546评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,572评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,582评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,330评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,776评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,087评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,257评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,923评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,571评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,192评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,436评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,145评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容