iOS结构体尺寸

一、结构体定义

结构体中的数据成员可以是基本类型,也可以是数组,也可以是指针,还可以是其他的结构体。下面是一个结构体的定义示例:

struct Student {
  bool sex;
  short int age;
  char *address;
  float grade;
  char  name[9];
};

二、结构体尺寸

一个被经常讨论的问题就是求结构体的尺寸(Size)大小,也就是结构体实例占用的内存字节数。结构体的尺寸受操作系统字长、编译器、对齐方式等众多因素的影响。因此要确认一个结构体的尺寸时如果没有上述的约束前提则是没有统一结果的。一般情况下计算结构体尺寸大小有如下规则:

字节对齐规则

  • 结构体中每个数据成员的偏移位置是数据成员本身尺寸的倍数。
  • 结构体的尺寸是最大基础类型数据成员尺寸的倍数。
  • 如果有结构体嵌套时,被嵌套的结构体成员的偏移位置就是被嵌套结构体中尺寸最大的基础类型数据成员尺寸的倍数。嵌套结构体的尺寸则是所有被嵌套中的以及自身中的最大基础类型数据成员尺寸的倍数。
字节对齐好处
  1. 内存是以字节为基本单位,cpu 在存取数据时,是以块为单位存取,并不是以字节为单位存取。频繁存取未对齐的数据,会极大降低 cpu 的性能。字节对齐后,会减低 cpu 的存取次数,这种以空间换时间的做法目的降低 cpu 的开销。
  2. 16 字节对齐,是由于在一个对象中,第一个属性 isa8 字节(继承自父类),当然一个对象肯定还有其他属性,当无属性时,会预留 8 字节,即 16 字节对齐,如果不预留,相当于这个对象的 isa 和其他对象的 isa 紧挨着,容易造成访问混乱;

按照上述的规则,就可以得出上面示例结构体在64位系统下的尺寸了:


64位系统结构体的内存布局.png

在上面的布局图中可以看出:

  1. sex数据成员是bool型,它占用 1 个字节的内存,而且是结构体中的第一个数据成员,第一个数据成员的偏移位置总是从0开始(0是任何数据类型尺寸的倍数)。
  2. age数据成员是short int,它占用 2 个字节的内存,它的偏移位置是2(2是2的倍数)。同时我们看到在第一个数据成员和第二个数据成员之间留下了一个字节的空隙,我们称之为padding。
  3. address数据成员是void *, 它占用 8 个字节的内存,它的偏移位置是8(8是8的倍数)。这个数据成员为了对齐留出了 4 个字节的padding空隙。
  4. grade数据成员是float, 它占用 4 个字节的内存,它的偏移量是16(16是4的倍数)。这个成员没有留下padding。
  5. name数据成员是char[9],它占用 9 个字节,它的偏移位置是20(20是1的倍数)。它也没有留下padding。
  6. 整个结构体中最大数据成员的尺寸是void*,它占用 8 个字节的内存,因此结构体的尺寸是8的倍数也就是 32 个字节。同时看到在尾部留下了 3 个字节的padding。

从上面的例子可以看出因为需要对齐,结构体中的数据成员并不一定是连续保存的,而是有可能会存在一些padding空隙。 这也引出了另外一个问题就是:当我们在定义结构体时如果数据成员的定义顺序安排的不合理就有可能会导致多余内存空间的占用和浪费。 为了达到最佳内存空间占用,可以将上述结构体中数据成员的定义顺序进行调整如下:

struct Student {
  bool sex;
  char  name[9];
  short int age;
  float grade;
  char *address;
};

就可以得出优化后的内存布局:


位置调整后的.png

怎样才能获得最优的排列顺序呢?我的建议是按基础数据类型的尺寸从小到大(或从大到小)的顺序进行排列

最后再来看看结构体有嵌套的情况下尺寸的计算规则,以下面的结构体定义为例:

struct A {
    int a1;
    char a2;
};
struct B {
    char b1;
    struct A b2;
};

结构体A的尺寸在64位系统下占用 8 个字节,那么结构体B的尺寸以及b2的偏移又是多少呢?

根据前面的嵌套规则定义可以得出: 所有结构体中最大的基础数据类型是A中的int a1 ,它占用了 4 个字节。因此得出B的尺寸是 12 ,而b2的偏移则是int长度(4)的倍数。

三、OC类的数据成员和尺寸

1. OC类的属性

无论是结构体还是类其实都是一些数据的集合的声明和描述,OC类也是如此。只不过在OC类中除了声明数据成员外,还可以定义方法。当然方法本身是不会占用对象的存储空间的。

在OC类中声明的实体属性最终会转化为数据成员。每个OC类中还会有一个隐式的数据成员isa,这是一个指针类型的数据成员,并且是作为类的第一个数据成员被定义。 因此下面的OC类定义:

@interface Student
  @property short int age;
  @property NSString *address;
  @property float grade;
  @property BOOL sex;
@end

如果转化为结构体的话就会变成:

struct Student {
  void *isa;
  BOOL _sex;
  short int _age;
  float  _grade;
  NSString *_address;
};

从上面的定义中可以看出,除了会多出一个isa数据成员外,数据成员的顺序也发生了变化,它不再是按OC中定义的属性顺序进行排列了。编译器会自动优化OC类中属性的排列顺序, 也就是说:

OC类中定义的属性顺序会在编译时进行优化调整,其调整的规则就是先按数据类型的尺寸从小到大进行排列,相同尺寸的数据成员则按字母顺序进行排列。

因此我们在定义OC类时不需要考虑属性的定义顺序,系统会优化这些顺序以便达到最小的内存占用。

最后再来说说OC类实例对象的内存占用问题。OC类的对象内存尺寸占用按如下规则进行计算:

  1. 64位系统中是所有数据成员的总和并且是8的倍数,32位系统中是所有数据成员的总和并且是4的倍数。
  2. 最小为 16 个字节。
2. OC类的内部数据成员

OC类中定义的实例属性系统在编译时会默认转化为一个带下划线的数据成员,属性数据成员的内存排列顺序会被优化处理。在实际中我们还可以在OC类中直接定义内部的数据成员,比如下面的形式:

@interface Student
  @property NSString *address;
  @property BOOL sex;
@end

@implementation Student {
   //内部的数据成员
    BOOL a[7];
    NSString  *b;
}
@end

上面的实现中定义了两个内部数据成员a,b。当出现这种情况时编译器不会对这些内部数据成员的顺序进行优化,而是按定义的顺序在内存中进行排列,并且是优先于属性数据成员进行排列。因此上面的例子最终的内存布局结构为:

struct Student {
  void *isa;
  BOOL a[7];
  NSString *b;
  BOOL _sex;
  NSString *_address;
};

因此个人不建议在OC类中定义内部数据成员,因为它会影响最终的对象内存占用情况。如果实在是要定义的话就需要考虑这些内部数据成员的定义顺序以便达到最佳的内存占用布局来减少对象内存实例的占用。就以上面的代码为例,在64位系统下的最佳定义顺序应该如下:

@interface Student
  @property NSString *address;
  @property BOOL sex;
@end

@implementation Student {
   //内部的数据成员
   NSString  *b;
   BOOL a[7];
}
@end
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352