Kafka如何解决消息丢失问题,消费重复问题

Kafka简介:

Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。

Kafka数据丢失原因

可能是设置offset为自动定时提交,当offset被自动定时提交时,数据还在内存中未处理,此时刚好把线程kill掉,那么offset已经提交,但是数据未处理,导致这部分内存中的数据丢失

Kafka数据丢失问题解决方案:                                      

首先对kafka进行限速, 其次启用重试机制,重试间隔时间设置长一些,最后Kafka设置acks=all,即需要相应的所有处于ISR的分区都确认收到该消息后,才算发送成功。

Kafka数据重复原因:

原因1:强行kill线程,导致消费后的数据,offset没有提交。

原因2:设置offset为自动提交

Kafka数据重复问题解决方案:

把kafka消费者的配置enable.auto.commit设为false,禁止kafka自动提交offset,从而使用spring-kafka提供的offset提交策略。spring-kafka中的offset提交策略可以保证一批消息数据没有完成消费的情况下,也能提交offset,从而避免了提交失败而导致永远重复消费的问题。

Kafka0.9版本新特性:

Kafka 0.9+增加了一个新的特性 Kafka Connect,可以更方便的创建和管理数据流管道。它为Kafka和其它系统创建规模可扩展的、可信赖的流数据提供了一个简单的模型。

通过 connectors可以将大数据从其它系统导入到Kafka中,也可以从Kafka中导出到其它系统。

Kafka Connect可以将完整的数据库注入到Kafka的Topic中,或者将服务器的系统监控指标注入到Kafka,然后像正常的Kafka流处理机制一样进行数据流处理。

而导出工作则是将数据从Kafka Topic中导出到其它数据存储系统、查询系统或者离线分析系统等,比如数据库、 Elastic Search、 Apache Ignite等。

KafkaConnect有两个核心概念:Source和Sink。 Source负责导入数据到Kafka,Sink负责从Kafka导出数据,它们都被称为Connector。

kafkaConnect通过Jest实现Kafka对接Elasticsearch

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容