Kafka简介:
Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据。这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。
Kafka数据丢失原因:
可能是设置offset为自动定时提交,当offset被自动定时提交时,数据还在内存中未处理,此时刚好把线程kill掉,那么offset已经提交,但是数据未处理,导致这部分内存中的数据丢失
Kafka数据丢失问题解决方案:
首先对kafka进行限速, 其次启用重试机制,重试间隔时间设置长一些,最后Kafka设置acks=all,即需要相应的所有处于ISR的分区都确认收到该消息后,才算发送成功。
Kafka数据重复原因:
原因1:强行kill线程,导致消费后的数据,offset没有提交。
原因2:设置offset为自动提交
Kafka数据重复问题解决方案:
把kafka消费者的配置enable.auto.commit设为false,禁止kafka自动提交offset,从而使用spring-kafka提供的offset提交策略。spring-kafka中的offset提交策略可以保证一批消息数据没有完成消费的情况下,也能提交offset,从而避免了提交失败而导致永远重复消费的问题。
Kafka0.9版本新特性:
Kafka 0.9+增加了一个新的特性 Kafka Connect,可以更方便的创建和管理数据流管道。它为Kafka和其它系统创建规模可扩展的、可信赖的流数据提供了一个简单的模型。
通过 connectors可以将大数据从其它系统导入到Kafka中,也可以从Kafka中导出到其它系统。
Kafka Connect可以将完整的数据库注入到Kafka的Topic中,或者将服务器的系统监控指标注入到Kafka,然后像正常的Kafka流处理机制一样进行数据流处理。
而导出工作则是将数据从Kafka Topic中导出到其它数据存储系统、查询系统或者离线分析系统等,比如数据库、 Elastic Search、 Apache Ignite等。
KafkaConnect有两个核心概念:Source和Sink。 Source负责导入数据到Kafka,Sink负责从Kafka导出数据,它们都被称为Connector。
kafkaConnect通过Jest实现Kafka对接Elasticsearch