使用PHATE复现Science Immunology文章的结果

在上篇文章中,我们初步探索了PHATE的使用方法,发现它在揭示一些连续分化过程中不同细胞状态之间的微小局部差异具有很好的效果,同时也能保留细胞全局的整体结构。在本节教程中,我们将复现演示近期发表在Science Immunology期刊上的一篇文章的结果,进一步学习PHATE的相关使用方法。

image.png

原文链接:A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing anti-tumor immune response. 2021, Science Immunology

文章结果图:


image.png

image.png

本文复现图:


image.png
image.png

文章数据下载

文章处理后的基因表达矩阵文件存放在GEO数据库中,检索号为 GSE182509,这里只提供了pkl格式的表达矩阵,需要用python的pickle包进行读取,我已将其转换为TSV文件存放在我的百度云盘中,有需要的可以下载使用。

链接:https://pan.baidu.com/s/1IoSIYoEfTzZarLWXWvgvzg
提取码:gkd9

image.png

加载示例数据

# 导入所需的python包
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import phate
import scprep
import magic

# 加载示例数据
chronic = scprep.io.load_tsv("GSM5530565_Chronic_LCMV_processed.matrix.txt")
acute = scprep.io.load_tsv("GSM5530564_Acute_LCMV_processed.matrix.txt")
tumor8 = scprep.io.load_tsv("GSM5530560_Lung_week8_processed.matrix.txt")
dln8 = scprep.io.load_tsv("GSM5530561_LN_week8_processed.matrix.txt")
tumor17 = scprep.io.load_tsv("GSM5530562_Lung_week17_processed.matrix.txt")
dln17 = scprep.io.load_tsv("GSM5530563_LN_week17_processed.matrix.txt")

# 查看示例数据
chronic.head()
#                    Mrpl15 (ENSMUSG00000033845)  ...  CAAA01147332.1 (ENSMUSG00000095742)
#0                                                ...
#AAACCTGAGAGTAAGG-1                          0.0  ...                             0.000000
#AAACCTGGTGTGAAAT-1                          0.0  ...                             0.000000
#AAACGGGAGGCTCATT-1                          0.0  ...                             0.000000
#AAACGGGGTAGCTTGT-1                          0.0  ...                             0.000000
#AAACGGGGTCGAATCT-1                          0.0  ...                             0.552073
#[5 rows x 11595 columns]
chronic.shape
#(1185, 11595)
acute.shape
#(10768, 12960)
tumor8.shape
#(806, 11749)
dln8.shape
#(1742, 12116)
tumor17.shape
#(731, 11150)
dln17.shape
#(876, 11595)

数据质控预处理和数据归一化

由于下载的数据是预先已经进行质控过滤和归一化处理的,这里将不再进行处理。详细用法见上期 使用PHATE进行单细胞高维数据的可视化

使用PHATE进行低维嵌入降维可视化

### analysis for chronic sample ###
#Embedding Data Using PHATE
# Instantiating the PHATE estimator
phate_operator = phate.PHATE(n_jobs=-2)

Y_phate = phate_operator.fit_transform(chronic)
Y_phate
#array([[ -5.34563999,   6.11670333],
#       [ 29.8771147 ,   8.33029219],
#       [  9.44218856, -25.94568946],
#       ...,
#       [-10.86402299,  -1.15554   ],
#       [-14.65615727,  -1.03794057],
#       [-16.53150258,   4.50993521]])

细胞聚类分群

# cell clustering
clusters = phate.cluster.kmeans(phate_operator, n_clusters=8)
clusters
#array([0, 2, 1, ..., 4, 4, 4], dtype=int32)

# 聚类结果可视化
scprep.plot.scatter2d(Y_phate, c=clusters, figsize=(8,7), cmap="Spectral",
                      ticks=False, label_prefix="PHATE", title= "Chronic LCMV")
plt.savefig("plot_phate_chronic_2d_by_cluster.png")
image.png

使用MAGIC进行数据填充

#Creating the MAGIC operator
magic_op = magic.MAGIC()

# Running MAGIC for all genes
chronic_magic = magic_op.fit_transform(chronic, genes='all_genes')
chronic_magic.head()
#                    Mrpl15 (ENSMUSG00000033845)  ...  CAAA01147332.1 (ENSMUSG00000095742)
#0                                                ...
#AAACCTGAGAGTAAGG-1                     0.150924  ...                             0.076723
#AAACCTGGTGTGAAAT-1                     0.153466  ...                             0.067584
#AAACGGGAGGCTCATT-1                     0.146601  ...                             0.064838

# rename columns names
chronic_magic.columns = [i.split(" ")[0] for i in chronic_magic.columns.tolist()]

# marker基因可视化
markers = ["Sell", "Ccr7", "Tcf7", "Slamf6", "Xcl1", "Il7r", "Eomes", "Tbx21", "Gzmb", "Prf1", "Pdcd1", "Havcr2", "Cd101", "Cx3cr1", "Cxcr6"]

for marker in markers:
        # 2d plot
        scprep.plot.scatter2d(Y_phate, c=chronic_magic[marker], figsize=(8,7), cmap="Reds",
                        ticks=False, label_prefix="PHATE", title=marker + " magic expression")
        plt.savefig("plot_chronic_magic_marker_2d_" + marker + ".png")
image.png

根据这些marker基因的表达情况,我们将不同的cluster进行细胞类型的注释,得到以下的细胞注释结果。

Tnaive:Sell, Ccr7
Tsl: Tcf7, Slamf6, Xcl1
Ttrans: Cx3cr1, Cxcr6
Tex: Pdcd1, Havcr2, Cd101

image.png

多样本合并分析

### analysis for combined five sample ###
# Merge all datasets and create a vector representing the time point of each sample
alldata = [chronic,tumor8,tumor17,dln8,dln17]

EBT_counts, sample_labels = scprep.utils.combine_batches(
    alldata,
    ["Chronic","Early Tumor","Late Tumor","Early LN","Late LN"],
    append_to_cell_names=True
)
del alldata # removes objects from memory

EBT_counts.head()
#                            Mrpl15 (ENSMUSG00000033845)  ...  CAAA01147332.1 (ENSMUSG00000095742)
#AAACCTGAGAGTAAGG-1_Chronic                          0.0  ...                             0.000000
#AAACCTGGTGTGAAAT-1_Chronic                          0.0  ...                             0.000000
#AAACGGGAGGCTCATT-1_Chronic                          0.0  ...                             0.000000
#AAACGGGGTAGCTTGT-1_Chronic                          0.0  ...                             0.000000
#AAACGGGGTCGAATCT-1_Chronic                          0.0  ...                             0.552073
#[5 rows x 10246 columns]

EBT_counts.shape
#(5340, 10246)

sample_labels
#AAACCTGAGAGTAAGG-1_Chronic    Chronic
#AAACCTGGTGTGAAAT-1_Chronic    Chronic
#AAACGGGAGGCTCATT-1_Chronic    Chronic
#AAACGGGGTAGCTTGT-1_Chronic    Chronic
#AAACGGGGTCGAATCT-1_Chronic    Chronic
#                               ...
#Name: sample_labels, Length: 5340, dtype: object

PHATE降维可视化

#Embedding Data Using PHATE
# Instantiating the PHATE estimator
phate_operator = phate.PHATE(n_jobs=-2)

Y_phate = phate_operator.fit_transform(EBT_counts)
Y_phate
#array([[ 79.05651647,  15.42592929],
#       [ 20.72815444,  25.65566379],
#       [ 90.57712893,  -4.77917562],
#       ...,
#       [-52.39011592,  39.20142516],
#       [-28.51731009,  -8.66499775],
#       [-46.00734805, -17.37265621]])

scprep.plot.scatter2d(Y_phate, c=sample_labels, figsize=(10,8), cmap="Spectral",
                      ticks=False, label_prefix="PHATE")
plt.savefig("plot_phate_2d_by_sample.png")
test4.png
# 3D visualization
phate_operator.set_params(n_components=3)
Y_phate_3d = phate_operator.transform()
Y_phate_3d
#array([[ 77.85894712,  13.21732854, -11.29708591],
#       [ 17.23971363,  19.47621167, -27.54015408],
#       [ 87.69788489,   4.0231593 ,  13.16082805],
#       ...,
#       [-46.46850791,  42.68065699,  -2.93836416],
#       [-20.53357918,  -4.9821892 , -22.70265013],
#       [-36.18351133,  -9.56494547, -29.67206442]])

scprep.plot.scatter3d(Y_phate_3d, c=sample_labels, figsize=(8,6), cmap="Spectral",
                      ticks=False, label_prefix="PHATE")
plt.savefig("plot_phate_3d_by_sample.png")
test5.png

细胞聚类分群

# cell clustering
clusters = phate.cluster.kmeans(phate_operator, n_clusters=12)
clusters
#array([8, 6, 1, ..., 2, 4, 4], dtype=int32)

# save meta data
meta = pd.merge(pd.DataFrame(sample_labels),pd.DataFrame(clusters,index=sample_labels.index,columns=["cluster"]),left_index=True,right_index=True)
meta.head()
#                           sample_labels  cluster
#AAACCTGAGAGTAAGG-1_Chronic       Chronic        8
#AAACCTGGTGTGAAAT-1_Chronic       Chronic        6
#AAACGGGAGGCTCATT-1_Chronic       Chronic        1
#AAACGGGGTAGCTTGT-1_Chronic       Chronic        8
#AAACGGGGTCGAATCT-1_Chronic       Chronic        8

meta.to_csv("metadata.csv")

scprep.plot.scatter3d(Y_phate_3d, c=clusters, figsize=(8,6), cmap="Spectral",
                      ticks=False, label_prefix="PHATE")
plt.savefig("plot_phate_3d_by_cluster.png")
test6.png
scprep.plot.scatter2d(Y_phate, c=clusters, figsize=(8,6), cmap="Spectral",
                      ticks=False, label_prefix="PHATE")
plt.savefig("plot_phate_2d_by_cluster.png")
test7.png
# to save as a gif:
scprep.plot.rotate_scatter3d(Y_phate_3d, c=sample_labels,
                             figsize=(8,6), cmap="Spectral",
                             ticks=False, label_prefix="PHATE", filename="phate.gif")

phate.gif

使用MAGIC进行数据填充

# rename columns names
EBT_counts.columns = [i.split(" ")[0] for i in EBT_counts.columns.tolist()]

# MAGIC imputation
#Creating the MAGIC operator
magic_op = magic.MAGIC()

#Running MAGIC with gene selection
#bmmsc_magic = magic_op.fit_transform(bmmsc_data, genes=["Mpo", "Klf1", "Ifitm1"])
#bmmsc_magic.head()

#Visualizing gene-gene relationships
#fig, (ax1, ax2) = plt.subplots(1,2, figsize=(16, 6))

#scprep.plot.scatter(x=bmmsc_data['Mpo'], y=bmmsc_data['Klf1'], c=bmmsc_data['Ifitm1'],  ax=ax1,
#                    xlabel='Mpo', ylabel='Klf1', legend_title="Ifitm1", title='Before MAGIC')

#scprep.plot.scatter(x=bmmsc_magic['Mpo'], y=bmmsc_magic['Klf1'], c=bmmsc_magic['Ifitm1'], ax=ax2,
#                    xlabel='Mpo', ylabel='Klf1', legend_title="Ifitm1", title='After MAGIC')
#plt.tight_layout()
#plt.show()

# Running MAGIC for all genes
EBT_counts_magic = magic_op.fit_transform(EBT_counts, genes='all_genes')
EBT_counts_magic.head()

markers = ["Sell", "Ccr7", "Tcf7", "Slamf6", "Xcl1", "Il7r", "Eomes", "Tbx21", "Gzmb", "Prf1", "Pdcd1", "Havcr2", "Cd101", "Cx3cr1", "Cxcr6"]

for marker in markers:
        # 2d plot
        scprep.plot.scatter2d(Y_phate, c=EBT_counts_magic[marker], figsize=(8,6), cmap="Reds",
                        ticks=False, label_prefix="PHATE", title=marker + " magic expression")
        plt.savefig("plot_magic_marker_2d_" + marker + ".png")
        # 3d plot
        scprep.plot.scatter3d(Y_phate_3d, c=EBT_counts_magic[marker], figsize=(8,6), cmap="Reds",
                        ticks=False, label_prefix="PHATE", title=marker + " magic expression")
        plt.savefig("plot_magic_marker_3d_" + marker + ".png")
image.png

基因差异表达分析

# Differential analysis
# By samples
de_samples = scprep.stats.differential_expression_by_cluster(EBT_counts_magic,clusters=sample_labels,direction="up")
de_samples
de_samples["Chronic"]

for key,value in de_samples.items():
        print(value.head(n=10))

# save DE data
de_samples["Chronic"].to_csv("DEs_Chronic.csv")
de_samples["Early Tumor"].to_csv("DEs_Early_Tumor.csv")
de_samples["Early LN"].to_csv("DEs_Early_LN.csv")

# By clusters
de_clusters = scprep.stats.differential_expression_by_cluster(EBT_counts_magic,clusters=clusters,direction="up")
de_clusters
de_clusters[0]

for key,value in de_clusters.items():
        print(value.head(n=10))
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,843评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,538评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,187评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,264评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,289评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,231评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,116评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,945评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,367评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,581评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,754评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,458评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,068评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,692评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,842评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,797评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,654评论 2 354