机器学习笔记(2):监督学习

2. 监督学习

我们先用一个"预测房价"的例子介绍什么是监督学习。

前阵子,一个学生从波特兰俄勒冈州的研究所收集了一些房价的数据。你把这些数据画出来,看起来是这个样子:


横轴表示房子的面积,单位是平方英尺,纵轴表示房价,单位是千美元。那基于这组数据,假如你有一个朋友,他有一套750平方英尺房子,现在他希望把房子卖掉,他想知道这房子能卖多少钱。

那么关于这个问题,机器学习算法将会怎么帮助你呢?


我们应用学习算法,可以在这组数据中画一条直线,或者换句话说,拟合一条直线,根据这条线我们可以推测出,这套房子可能卖15万刀。当然这不是唯一的算法。可能还有更好的,比如我们不用直线拟合这些数据,用二次方程去拟合可能效果会更好。


根据二次方程的曲线,我们可以从这个点推测出,这套房子能卖接近20万刀。

稍后我们将讨论如何选择学习算法,如何决定用直线还是二次方程来拟合。两个方案中有一个能让你朋友的房子出售得更合理。这些都是学习算法里面很好的例子。以上就是监督学习的例子。

可以看出,监督学习指的就是我们给学习算法一个数据集。这个数据集由“正确答案”组成。在房价的例子中,我们给了一系列房子的数据,我们给定数据集中每个样本的正确价格,即它们实际的售价然后运用学习算法,算出更多的正确答案。比如你朋友那个新房子的价格。用术语来讲,这叫做回归问题。我们试着推测出一个连续值的结果,即房子的价格。

一般房子的价格会记到美分,所以房价实际上是一系列离散的值,但是我们通常又把房价看成实数,看成是标量,所以又把它看成一个连续的数值。
回归这个词的意思是,我们在试着推测出这一系列连续值

我再举另外一个监督学习的例子。假设说你想通过查看病历来推测乳腺癌良性与否。

让我们来看一组数据:这个数据集中,横轴表示肿瘤的大小,纵轴上,我标出1和0表示是或者不是恶性肿瘤。我们之前见过的肿瘤,如果是恶性则记为1,不是恶性,或者说良性记为0。我有5个良性肿瘤样本,在1的位置有5个恶性肿瘤样本


现在我们有一个朋友很不幸检查出乳腺肿瘤。假设说她的肿瘤大概这么大,那么机器学习的问题就在于,你能否估算出肿瘤是恶性的或是良性的概率。


用术语来讲,这是一个分类问题。分类指的是,我们试着推测出离散的输出值:0或1良性或恶性,而事实上在分类问题中,输出可能不止两个值。比如说可能有三种乳腺癌,所以你希望预测离散输出0、1、2、3。0 代表良性,1 表示第1类乳腺癌,2表示第2类癌症,3表示第3类,但这也是分类问题。

因为这几个离散的输出分别对应良性,第一类第二类或者第三类癌症,在分类问题中我们可以用另一种方式绘制这些数据点。

现在我用不同的符号来表示这些数据。既然我们把肿瘤的尺寸看做区分恶性或良性的特征,那么我可以这么画,我用不同的符号来表示良性和恶性肿瘤。或者说是负样本和正样本现在我们不全部画X,良性的肿瘤改成用 O 表示,恶性的继续用 X 表示。来预测肿瘤的恶性与否。

在其它一些机器学习问题中,可能会遇到不止一种特征。举个例子,我们不仅知道肿瘤的尺寸,还知道对应患者的年龄。在其他机器学习问题中,我们通常有更多的特征,我朋友研究这个问题时,通常采用这些特征,比如肿块密度,肿瘤细胞尺寸的一致性和形状的一致性等等,还有一些其他的特征。这就是我们即将学到最有趣的学习算法之一。

那种算法不仅能处理2种3种或5种特征,即使有无限多种特征都可以处理。

上图中,我列举了总共5种不同的特征,坐标轴上的两种和右边的3种,但是在一些学习问题中,你希望不只用3种或5种特征。相反,你想用无限多种特征,好让你的算法可以利用大量的特征,或者说线索来做推测。那你怎么处理无限多个特征,甚至怎么存储这些特征都存在问题,你电脑的内存肯定不够用。我们以后会讲一个算法,叫支持向量机,里面有一个巧妙的数学技巧,能让计算机处理无限多个特征。想象一下,我没有写下这两种和右边的三种特征,而是在一个无限长的列表里面,一直写一直写不停的写,写下无限多个特征,事实上,我们能用算法来处理它们。

现在来回顾一下,这节课我们介绍了监督学习。其基本思想是,我们数据集中的每个样本都有相应的“正确答案”。再根据这些样本作出预测,就像房子和肿瘤的例子中做的那样。我们还介绍了回归问题,即通过回归来推出一个连续的输出,之后我们介绍了分类问题,其目标是推出一组离散的结果。

现在来个小测验:假设你经营着一家公司,你想开发学习算法来处理这两个问题:

  1. 你有一大批同样的货物,想象一下,你有上千件一模一样的货物等待出售,这时你想预测接下来的三个月能卖多少件?
  2. 你有许多客户,这时你想写一个软件来检验每一个用户的账户。对于每一个账户,你要判断它们是否曾经被盗过?

那这两个问题,它们属于分类问题、还是回归问题?

问题一: 是一个回归问题,因为你知道,如果我有数千件货物,我会把它看成一个实数,一个连续的值。因此卖出的物品数,也是一个连续的值。

问题二: 是一个分类问题,因为我会把预测的值,用 0 来表示账户未被盗,用 1 表示账户曾经被盗过。所以我们根据账号是否被盗过,把它们定为0 或 1,然后用算法推测一个账号是 0 还是 1,因为只有少数的离散值,所以我把它归为分类问题。

以上就是监督学习的内容。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,753评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,668评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,090评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,010评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,054评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,806评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,484评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,380评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,873评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,021评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,158评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,838评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,499评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,044评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,159评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,449评论 3 374
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,136评论 2 356

推荐阅读更多精彩内容

  • 李立的妈妈对他说过,你是家里的男人要照顾好老婆和孩子,这是你的责任。李立从小就很听妈妈的话,自从爸爸在自己16岁那...
    享乐跑步机阅读 177评论 0 0
  • 非常喜欢我的特训班同学张鹍的作业,她经常会用生动形象的语言阐述枯燥的生化知识,阐述三大营养素,真正做到了寓教于乐,...
    林红妮阅读 451评论 8 4
  • 2017年也就是去年的春节,我选择了辞职,辞去了编制内的稳定工作,就辞职这方面的话题我已经写过好几篇文章,但是总觉...
    美丽心婷阅读 241评论 1 2