Java 多线程

要想了解多线程,必须先了解线程,而要想了解线程,必须先了解进程,因为线程是依赖于进程而存在。

进程

正在执行的应用程序
进程是系统进行资源分配和调用的独立单位。每一个进程都有它自己的内存空间和系统资源。

线程

进程的执行单位,执行路径
在同一个进程内又可以执行多个任务,而这每一个任务我就可以看出是一个线程。
是程序的执行单元,执行路径。是程序使用CPU的最基本单位。

单线程

一个应用程序只有一条执行路径

多线程

一个应用程序有多条执行路径

多进程的意义

提高CPU的使用率
单进程的计算机只能做一件事情,而我们现在的计算机都可以做多件事情。
单CPU在某一个时间点上只能做一件事情。而我们在玩游戏,或者听音乐的时候,是CPU在做着程序间的高效切换让我们觉得是同时进行的。

多线程的意义

多线程的存在,不是提高程序的执行速度。其实是为了提高应用程序的使用率。
程序的执行其实都是在抢CPU的资源,CPU的执行权。
多个进程是在抢这个资源,而其中的某一个进程如果执行路径比较多,就会有更高的几率抢到CPU的执行权。
我们是不敢保证哪一个线程能够在哪个时刻抢到,所以线程的执行有随机性。

Java程序的运行原理及JVM启动是多线程的么

1.Java命令去启动JVM,JVM会启动一个进程,该进程会启动一个主线程。主线程去调用某个类的 main方法 。

2.是多线程的,至少有两个线程启动了,主线程和垃圾回收机制

多线程的实现

1.继承Thread类

public class MyThread extends Thread {

    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println(Thread.currentThread().getName()+"--->"+i);
        }
    }
}
public class MyThreadDemo {
    public static void main(String[] args) {
        MyThread myThread = new MyThread();
        myThread.setName("Threa第一个");
        myThread.start();
    }
}

2.实现Runnable接口

public class MyRunnable implements Runnable {
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println(Thread.currentThread().getName()+"--->"+i);
        }
    }
}
public class MyRunnableDemo {
    public static void main(String[] args) {
        MyRunnable myRunnable = new MyRunnable();
        Thread thread = new Thread(myRunnable);

        thread.setName("Runnable第一个");

        thread.start();
    }
}

问题

1.为什么要重写run()方法

run()方法里面封装的是被线程执行的代码

2.启动线程使用的是那个方法

start()

3.线程能不能多次启动

不能

4.run()和start()方法的区别

如直接调用run()方法只是普通的方法调用
start()是先启动线程,再由JVM调用run()方法

1.调度

分时调度:
所有线程轮流使用 CPU 的使用权,平均分配每个线程占用 CPU 的时间片
抢占式调度(Java采用这种方式):
优先让优先级高的线程使用 CPU,如果线程的优先级相同,那么会随机选择一个,优先级高的线程获取的 CPU 时间片相对多一些。

2.调度优先级
public final int getPriority()
public final void setPriority(int newPriority)

优先级默认是5,范围是1-10

线程控制

1.休眠线程
public class ThreadSleep extends Thread {
    @Override
    public void run() {
        for (int x = 0; x < 100; x++) {
            System.out.println(getName() + ":" + x + ",日期:" + new Date());
            // 睡眠
            // 困了,我稍微休息1秒钟
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}
2.加入线程
/*
 * public final void join():等待该线程终止。 
 */  
public class ThreadJoinDemo {
    public static void main(String[] args) {
        ThreadJoin tj1 = new ThreadJoin();
        ThreadJoin tj2 = new ThreadJoin();
        ThreadJoin tj3 = new ThreadJoin();

        tj1.setName("李渊");
        tj2.setName("李世民");
        tj3.setName("李元霸");

        tj1.start();
        try {
            tj1.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        
        tj2.start();
        tj3.start();
    }
}
3.礼让线程
public class ThreadYield extends Thread {
    @Override
    public void run() {
        for (int x = 0; x < 100; x++) {
            System.out.println(getName() + ":" + x);
            Thread.yield();
        }
    }
}
/*
 * public static void yield():暂停当前正在执行的线程对象,并执行其他线程。 
 * 让多个线程的执行更和谐,但是不能靠它保证一人一次。
 */
public class ThreadYieldDemo {
    public static void main(String[] args) {
        ThreadYield ty1 = new ThreadYield();
        ThreadYield ty2 = new ThreadYield();

        ty1.setName("林青霞");
        ty2.setName("刘意");

        ty1.start();
        ty2.start();
    }
}
4.后台线程
/*
 * public final void setDaemon(boolean on):将该线程标记为守护线程或用户线程。
 * 当正在运行的线程都是守护线程时,Java 虚拟机退出。 该方法必须在启动线程前调用。 
 */
public class ThreadDaemonDemo {
    public static void main(String[] args) {
        ThreadDaemon td1 = new ThreadDaemon();
        ThreadDaemon td2 = new ThreadDaemon();

        td1.setName("关羽");
        td2.setName("张飞");

        // 设置守护线程
        td1.setDaemon(true);
        td2.setDaemon(true);

        td1.start();
        td2.start();

        Thread.currentThread().setName("刘备");
        for (int x = 0; x < 5; x++) {
            System.out.println(Thread.currentThread().getName() + ":" + x);
        }
    }
}
5.终止线程(掌握)
public class ThreadStop extends Thread {
    @Override
    public void run() {
        System.out.println("开始执行:" + new Date());

        // 我要休息10秒钟,亲,不要打扰我哦
        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {
            // e.printStackTrace();
            System.out.println("线程被终止了");
        }

        System.out.println("结束执行:" + new Date());
    }
}

/*
 * public final void stop():让线程停止,过时了,但是还可以使用。
 * public void interrupt():中断线程。 把线程的状态终止,并抛出一个InterruptedException。
 */
public class ThreadStopDemo {
    public static void main(String[] args) {
        ThreadStop ts = new ThreadStop();
        ts.start();

        // 你超过三秒不醒过来,我就干死你
        try {
            Thread.sleep(3000);
            // ts.stop();
            ts.interrupt();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

线程的生命周期

多线程安全问题的原因

判断一个程序是否有线程安全问题的依据
1.是否有多线程环境
2.有共享数据
3.是否有多条语句操作共享数据

同步解决线程安全问题

把多个语句操作共享数据的代码给锁起来,让任意时刻只能有一个线程执行即可。

同步代码块
public class SellTicket implements Runnable {
    // 定义100张票
    private int tickets = 100;
    //创建锁对象
    private Object obj = new Object();

    @Override
    public void run() {
        while (true) {
            synchronized (obj) {
                if (tickets > 0) {
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(Thread.currentThread().getName()
                            + "正在出售第" + (tickets--) + "张票");
                }
            }
        }
    }
}

同步方法
//这个锁对象是this
private synchronized void sellTicket() 
 if (tickets > 0) {
            try {
                    Thread.sleep(100);
            } catch (InterruptedException e) {
                    e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName()
                        + "正在出售第" + (tickets--) + "张票 ");
            }
    }
静态同步方法
//这里的锁对象是当前类的字节码文件对象
private static synchronized void sellTicket() {
        if (tickets > 0) {
        try {
                Thread.sleep(100);
        } catch (InterruptedException e) {
                e.printStackTrace();
        }
        System.out.println(Thread.currentThread().getName()
                    + "正在出售第" + (tickets--) + "张票 ");
        }
}
}

同步的特点

同步的前提

多个线程
多个线程使用的是同一个锁对象

同步的好处

同步的出现解决了多线程的安全问题。

同步的弊端

当线程相当多时,因为每个线程都会去判断同步上的锁,这是很耗费资源的,无形中会降低程序的运行效率。

线程安全的类

StringBuffer
Vector
Hashtable
如何把一个线程不安全的集合类变成一个线程安全的集合类用Collections工具类的方法即可。

Lock锁

虽然我们可以理解同步代码块和同步方法的锁对象问题,但是我们并没有直接看到在哪里加上了锁,在哪里释放了锁,为了更清晰的表达如何加锁和释放锁,JDK5以后提供了一个新的锁对象Lock

Lock
void lock()
void unlock()
ReentrantLock
public class SellTicket implements Runnable {

    // 定义票
    private int tickets = 100;

    // 定义锁对象
    private Lock lock = new ReentrantLock();

    @Override
    public void run() {
        while (true) {
            try {
                // 加锁
                lock.lock();
                if (tickets > 0) {
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(Thread.currentThread().getName()
                            + "正在出售第" + (tickets--) + "张票");
                }
            } finally {
                // 释放锁
                lock.unlock();
            }
        }
    }

}

死锁问题

同步弊端
效率低
如果出现了同步嵌套,就容易产生死锁问题
死锁问题及其代码
是指两个或者两个以上的线程在执行的过程中,因争夺资源产生的一种互相等待现象
同步代码块的嵌套案例

public class MyLock {
    // 创建两把锁对象
    public static final Object objA = new Object();
    public static final Object objB = new Object();
}


public class DieLock extends Thread {

    private boolean flag;

    public DieLock(boolean flag) {
        this.flag = flag;
    }

    @Override
    public void run() {
        if (flag) {
            synchronized (MyLock.objA) {
                System.out.println("if objA");
                synchronized (MyLock.objB) {
                    System.out.println("if objB");
                }
            }
        } else {
            synchronized (MyLock.objB) {
                System.out.println("else objB");
                synchronized (MyLock.objA) {
                    System.out.println("else objA");
                }
            }
        }
    }
}

/*
 * 举例:
 *      中国人,美国人吃饭案例。
 *      正常情况:
 *          中国人:筷子两支
 *          美国人:刀和叉
 *      现在:
 *          中国人:筷子1支,刀一把
 *          美国人:筷子1支,叉一把
 */
public class DieLockDemo {
    public static void main(String[] args) {
        DieLock dl1 = new DieLock(true);
        DieLock dl2 = new DieLock(false);

        dl1.start();
        dl2.start();
    }
}

线程间通信

生产者和消费者多线程体现(线程间通信问题)
以学生作为资源来实现的

    资源类:Student
    设置数据类:SetThread(生产者)
    获取数据类:GetThread(消费者)
    测试类:StudentDemo
public class Student {
    private String name;
    private int age;
    private boolean flag; // 默认情况是没有数据,如果是true,说明有数据

    public synchronized void set(String name, int age) {
        // 如果有数据,就等待
        if (this.flag) {
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        // 设置数据
        this.name = name;
        this.age = age;

        // 修改标记
        this.flag = true;
        this.notify();
    }

    public synchronized void get() {
        // 如果没有数据,就等待
        if (!this.flag) {
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        // 获取数据
        System.out.println(this.name + "---" + this.age);

        // 修改标记
        this.flag = false;
        this.notify();
    }
}
public class SetThread implements Runnable {

    private Student s;
    private int x = 0;

    public SetThread(Student s) {
        this.s = s;
    }

    @Override
    public void run() {
        while (true) {
            if (x % 2 == 0) {
                s.set("林青霞", 27);
            } else {
                s.set("刘意", 30);
            }
            x++;
        }
    }
}
public class GetThread implements Runnable {
    private Student s;

    public GetThread(Student s) {
        this.s = s;
    }

    @Override
    public void run() {
        while (true) {
            s.get();
        }
    }
}
*
 * 分析:
 *      资源类:Student 
 *      设置学生数据:SetThread(生产者)
 *      获取学生数据:GetThread(消费者)
 *      测试类:StudentDemo
 * 
 * 问题1:按照思路写代码,发现数据每次都是:null---0
 * 原因:我们在每个线程中都创建了新的资源,而我们要求的时候设置和获取线程的资源应该是同一个
 * 如何实现呢?
 *      在外界把这个数据创建出来,通过构造方法传递给其他的类。
 * 
 * 问题2:为了数据的效果好一些,我加入了循环和判断,给出不同的值,这个时候产生了新的问题
 *      A:同一个数据出现多次
 *      B:姓名和年龄不匹配
 * 原因:
 *      A:同一个数据出现多次
 *          CPU的一点点时间片的执行权,就足够你执行很多次。
 *      B:姓名和年龄不匹配
 *          线程运行的随机性
 * 线程安全问题:
 *      A:是否是多线程环境      是
 *      B:是否有共享数据       是
 *      C:是否有多条语句操作共享数据 是
 * 解决方案:
 *      加锁。
 *      注意:
 *          A:不同种类的线程都要加锁。
 *          B:不同种类的线程加的锁必须是同一把。
 * 
 * 问题3:虽然数据安全了,但是呢,一次一大片不好看,我就想依次的一次一个输出。
 * 如何实现呢?
 *      通过Java提供的等待唤醒机制解决。
 * 
 * 等待唤醒:
 *      Object类中提供了三个方法:
 *          wait():等待
 *          notify():唤醒单个线程
 *          notifyAll():唤醒所有线程
 *      为什么这些方法不定义在Thread类中呢?
 *          这些方法的调用必须通过锁对象调用,而我们刚才使用的锁对象是任意锁对象。
 *          所以,这些方法必须定义在Object类中。
 * 
 * 最终版代码中:
 *      把Student的成员变量给私有的了。
 *      把设置和获取的操作给封装成了功能,并加了同步。
 *      设置或者获取的线程里面只需要调用方法即可。
 */
public class StudentDemo {
    public static void main(String[] args) {
        //创建资源
        Student s = new Student();
        
        //设置和获取的类
        SetThread st = new SetThread(s);
        GetThread gt = new GetThread(s);

        //线程类
        Thread t1 = new Thread(st);
        Thread t2 = new Thread(gt);

        //启动线程
        t1.start();
        t2.start();
    }
}

等待唤醒机制

Object类中提供了三个方法:
wait():等待
notify():唤醒单个线程
notifyAll():唤醒所有线程
为什么这些方法不定义在Thread类中呢?
这些方法的调用必须通过锁对象调用,而我们刚才使用的锁对象是任意锁对象。所以,这些方法必须定义在Object类中。

线程状态转换图

线程组

Java中使用ThreadGroup来表示线程组,它可以对一批线程进行分类管理,
Java允许 程序直接对线程组进行控制。
默认情况下,所有的线程都属于主线程组。
public final ThreadGroup getThreadGroup()
我们也可以给线程设置分组
Thread(ThreadGroup group, Runnable target, String name)

/*
 * 线程组: 把多个线程组合到一起。
 * 它可以对一批线程进行分类管理,Java允许程序直接对线程组进行控制。
 */
public class ThreadGroupDemo {
    public static void main(String[] args) {
        // method1();

        // 我们如何修改线程所在的组呢?
        // 创建一个线程组
        // 创建其他线程的时候,把其他线程的组指定为我们自己新建线程组
        method2();

        // t1.start();
        // t2.start();
    }

    private static void method2() {
        // ThreadGroup(String name)
        ThreadGroup tg = new ThreadGroup("这是一个新的组");

        MyRunnable my = new MyRunnable();
        // Thread(ThreadGroup group, Runnable target, String name)
        Thread t1 = new Thread(tg, my, "林青霞");
        Thread t2 = new Thread(tg, my, "刘意");
        
        System.out.println(t1.getThreadGroup().getName());
        System.out.println(t2.getThreadGroup().getName());
        
        //通过组名称设置后台线程,表示该组的线程都是后台线程
        tg.setDaemon(true);
    }

    private static void method1() {
        MyRunnable my = new MyRunnable();
        Thread t1 = new Thread(my, "林青霞");
        Thread t2 = new Thread(my, "刘意");
        // 我不知道他们属于那个线程组,我想知道,怎么办
        // 线程类里面的方法:public final ThreadGroup getThreadGroup()
        ThreadGroup tg1 = t1.getThreadGroup();
        ThreadGroup tg2 = t2.getThreadGroup();
        // 线程组里面的方法:public final String getName()
        String name1 = tg1.getName();
        String name2 = tg2.getName();
        System.out.println(name1);
        System.out.println(name2);
        // 通过结果我们知道了:线程默认情况下属于main线程组
        // 通过下面的测试,你应该能够看到,默任情况下,所有的线程都属于同一个组
        System.out.println(Thread.currentThread().getThreadGroup().getName());
    }
}

线程池

程序启动一个新线程成本是比较高的,因为它涉及到要与操作系统进行交互。而使用线程池可以很好的提高性能,尤其当程序中要创建大量生存期很短的线程时,更应该考虑使用线程池

1.线程池里的每一个线程代码结束后,并不会死亡,而是再次回到线程池中成为空闲状态,等待下一个对象来使用
2.在JDK5之前,我们必须手动实现自己的线程池,从JDK5开始,Java内置支持线程池

线程池实现

JDK5新增了一个Executors工厂类来产生线程池,有如下几个方法

public static ExecutorService newCachedThreadPool()
public static ExecutorService newFixedThreadPool(int nThreads)
public static ExecutorService newSingleThreadExecutor()

这些方法的返回值是ExecutorService对象,该对象表示一个线程池,可以执行Runnable对象或者Callable对象代表的线程。它提供了如下方法

Future<?> submit(Runnable task)
<T> Future<T> submit(Callable<T> task)

案例演示
创建线程池对象
创建Runnable实例
提交Runnable实例
关闭线程池

public class MyRunnable implements Runnable {

    @Override
    public void run() {
        for (int x = 0; x < 100; x++) {
            System.out.println(Thread.currentThread().getName() + ":" + x);
        }
    }

}

/*
 * 线程池的好处:线程池里的每一个线程代码结束后,并不会死亡,而是再次回到线程池中成为空闲状态,等待下一个对象来使用。
 * 
 * 如何实现线程的代码呢?
 *      A:创建一个线程池对象,控制要创建几个线程对象。
 *          public static ExecutorService newFixedThreadPool(int nThreads)
 *      B:这种线程池的线程可以执行:
 *          可以执行Runnable对象或者Callable对象代表的线程
 *          做一个类实现Runnable接口。
 *      C:调用如下方法即可
 *          Future<?> submit(Runnable task)
 *          <T> Future<T> submit(Callable<T> task)
 *      D:我就要结束,可以吗?
 *          可以。
 */
public class ExecutorsDemo {
    public static void main(String[] args) {
        // 创建一个线程池对象,控制要创建几个线程对象。
        // public static ExecutorService newFixedThreadPool(int nThreads)
        ExecutorService pool = Executors.newFixedThreadPool(2);

        // 可以执行Runnable对象或者Callable对象代表的线程
        pool.submit(new MyRunnable());
        pool.submit(new MyRunnable());

        //结束线程池
        pool.shutdown();
    }
}

多线程实现方案三

实现Callable接口
步骤和刚才演示线程池执行Runnable对象的差不多。
但是还可以更好玩一些,求和案例演示
好处:
可以有返回值
可以抛出异常
弊端:
代码比较复杂,所以一般不用
不带泛型

mport java.util.concurrent.Callable;

//Callable:是带泛型的接口。
//这里指定的泛型其实是call()方法的返回值类型。
public class MyCallable implements Callable {

    @Override
    public Object call() throws Exception {
        for (int x = 0; x < 100; x++) {
            System.out.println(Thread.currentThread().getName() + ":" + x);
        }
        return null;
    }

}

/*
 * 多线程实现的方式3:
 *      A:创建一个线程池对象,控制要创建几个线程对象。
 *          public static ExecutorService newFixedThreadPool(int nThreads)
 *      B:这种线程池的线程可以执行:
 *          可以执行Runnable对象或者Callable对象代表的线程
 *          做一个类实现Runnable接口。
 *      C:调用如下方法即可
 *          Future<?> submit(Runnable task)
 *          <T> Future<T> submit(Callable<T> task)
 *      D:我就要结束,可以吗?
 *          可以。
 */
public class CallableDemo {
    public static void main(String[] args) {
        //创建线程池对象
        ExecutorService pool = Executors.newFixedThreadPool(2);
        
        //可以执行Runnable对象或者Callable对象代表的线程
        pool.submit(new MyCallable());
        pool.submit(new MyCallable());
        
        //结束
        pool.shutdown();
    }
}

带泛型

/*
 * 线程求和案例
 */
public class MyCallable implements Callable<Integer> {

    private int number;

    public MyCallable(int number) {
        this.number = number;
    }

    @Override
    public Integer call() throws Exception {
        int sum = 0;
        for (int x = 1; x <= number; x++) {
            sum += x;
        }
        return sum;
    }

}
/*
 * 多线程实现的方式3:
 *      A:创建一个线程池对象,控制要创建几个线程对象。
 *          public static ExecutorService newFixedThreadPool(int nThreads)
 *      B:这种线程池的线程可以执行:
 *          可以执行Runnable对象或者Callable对象代表的线程
 *          做一个类实现Runnable接口。
 *      C:调用如下方法即可
 *          Future<?> submit(Runnable task)
 *          <T> Future<T> submit(Callable<T> task)
 *      D:我就要结束,可以吗?
 *          可以。
 */
public class CallableDemo {
    public static void main(String[] args) throws InterruptedException, ExecutionException {
        // 创建线程池对象
        ExecutorService pool = Executors.newFixedThreadPool(2);

        // 可以执行Runnable对象或者Callable对象代表的线程
        Future<Integer> f1 = pool.submit(new MyCallable(100));
        Future<Integer> f2 = pool.submit(new MyCallable(200));

        // V get()
        Integer i1 = f1.get();
        Integer i2 = f2.get();

        System.out.println(i1);
        System.out.println(i2);

        // 结束
        pool.shutdown();
    }
}

匿名内部类实现多线程

/*
 * 匿名内部类的格式:
 *      new 类名或者接口名() {
 *          重写方法;
 *      };
 *      本质:是该类或者接口的子类对象。
 */
public class ThreadDemo {
    public static void main(String[] args) {
        // 继承Thread类来实现多线程
        new Thread() {
            public void run() {
                for (int x = 0; x < 100; x++) {
                    System.out.println(Thread.currentThread().getName() + ":"
                            + x);
                }
            }
        }.start();

        // 实现Runnable接口来实现多线程
        new Thread(new Runnable() {
            @Override
            public void run() {
                for (int x = 0; x < 100; x++) {
                    System.out.println(Thread.currentThread().getName() + ":"
                            + x);
                }
            }
        }) {
        }.start();

        // 更有难度的
        new Thread(new Runnable() {
            @Override
            public void run() {
                for (int x = 0; x < 100; x++) {
                    System.out.println("hello" + ":" + x);
                }
            }
        }) {
            public void run() {
                for (int x = 0; x < 100; x++) {
                    System.out.println("world" + ":" + x);
                }
            }
        }.start();
    }
}

定时器

定时器是一个应用十分广泛的线程工具,可用于调度多个定时任务以后台线程的方式执行。在Java中,可以通过Timer和TimerTask类来实现定义调度的功能
Timer
public Timer()
public void schedule(TimerTask task, long delay)
public void schedule(TimerTask task,long delay,long period)
TimerTask
public abstract void run()
public boolean cancel()

/*
 * 定时器:可以让我们在指定的时间做某件事情,还可以重复的做某件事情。
 * 依赖Timer和TimerTask这两个类:
 * Timer:定时
 *      public Timer()
 *      public void schedule(TimerTask task,long delay)
 *      public void schedule(TimerTask task,long delay,long period)
 *      public void cancel()
 * TimerTask:任务
 */
public class TimerDemo {
    public static void main(String[] args) {
        // 创建定时器对象
        Timer t = new Timer();
        // 3秒后执行爆炸任务
        // t.schedule(new MyTask(), 3000);
        //结束任务
        t.schedule(new MyTask(t), 3000);
    }
}

// 做一个任务
class MyTask extends TimerTask {

    private Timer t;
    
    public MyTask(){}
    
    public MyTask(Timer t){
        this.t = t;
    }
    
    @Override
    public void run() {
        System.out.println("beng,爆炸了");
        t.cancel();
    }

}
/*
 * 定时器:可以让我们在指定的时间做某件事情,还可以重复的做某件事情。
 * 依赖Timer和TimerTask这两个类:
 * Timer:定时
 *      public Timer()
 *      public void schedule(TimerTask task,long delay)
 *      public void schedule(TimerTask task,long delay,long period)
 *      public void cancel()
 * TimerTask:任务
 */
public class TimerDemo2 {
    public static void main(String[] args) {
        // 创建定时器对象
        Timer t = new Timer();
        // 3秒后执行爆炸任务第一次,每隔2秒再继续炸
        t.schedule(new MyTask2(), 3000, 2000);
    }
}

// 做一个任务
class MyTask2 extends TimerTask {
    @Override
    public void run() {
        System.out.println("beng,爆炸了");
    }
}
/*
 * 需求:在指定的时间删除我们的指定目录(你可以指定c盘,但是我不建议,我使用项目路径下的demo)
 */

class DeleteFolder extends TimerTask {

    @Override
    public void run() {
        File srcFolder = new File("demo");
        deleteFolder(srcFolder);
    }

    // 递归删除目录
    public void deleteFolder(File srcFolder) {
        File[] fileArray = srcFolder.listFiles();
        if (fileArray != null) {
            for (File file : fileArray) {
                if (file.isDirectory()) {
                    deleteFolder(file);
                } else {
                    System.out.println(file.getName() + ":" + file.delete());
                }
            }
            System.out.println(srcFolder.getName() + ":" + srcFolder.delete());
        }
    }
}

public class TimerTest {
    public static void main(String[] args) throws ParseException {
        Timer t = new Timer();

        String s = "2014-11-27 15:45:00";
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        Date d = sdf.parse(s);

        t.schedule(new DeleteFolder(), d);
    }
}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351