学习小组Day6笔记--Yang

学习R包

Day6—学习R包.png

1.安装和加载R包

1.1镜像设置

一劳永逸
首先用file.edit()来编辑文件:

file.edit('~/.Rprofile')

添加好两行options代码

# options函数就是设置R运行过程中的一些选项设置
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #对应清华源
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") #对应中科大源
# 当然可以换成其他地区的镜像

最后保存=》重启Rstudio,这时你再运行一下:options()$reposoptions()$BioC_mirror 就发现已经配置好了,不用每次再手动运行了。

1.2安装

CRAN:install.packages("包")
Biocductor:BiocManager::install("包")

1.3加载

library(包)
require(包)

2.安装加载三部曲

options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 
install.packages("dplyr")
library(dplyr)

示例数据:内置iris数据集的简化版

test <- iris[c(1:2,51:52,101:102),]

3.dplyr五个基础函数

3.1mutate()新增列

mutate(test, new = Sepal.Length * Sepal.Width)

3.2select()按列筛选

3.2.1按列号筛选

select(test,1)
select(test,c(1,5))
select(test,Sepal.Length)

3.2.2按列名筛选

select(test,Petal.Length,Petal.Width)
vars<-c("Petal.Length","Petal.Width")
select(test,one_of(vars))

3.3filter()筛选行

filter(test, Species == "setosa")
filter(test, Species == "setosa"&Sepal.Length > 5 )
filter(test, Species %in% c("setosa","versicolor"))

3.4arrange(),按某1列或某几列对整个表格进行排序

arrange(test, Sepal.Length)#默认从小到大排序
arrange(test, desc(Sepal.Length))#用desc从大到小

3.5summarise():汇总

对数据进行汇总操作,结合group_by使用实用性强

summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))

4dplyr两个实用技能

4.1管道操作 %>% (cmd/ctr + shift + M)

test %>% 
  group_by(Species) %>% 
  summarise(mean(Sepal.Length), sd(Sepal.Length))

4.2count统计某列的unique值

count(test,Species)

5dplyr处理关系数据

即将2个表进行连接,注意:不要引入factor

options(stringsAsFactors = F)

test1 <- data.frame(x = c('b','e','f','x'), 
                    z = c("A","B","C",'D'),
                    stringsAsFactors = F)
test1
test2 <- data.frame(x = c('a','b','c','d','e','f'), 
                    y = c(1,2,3,4,5,6),
                    stringsAsFactors = F)
test2 

5.1內连inner_join,取交集

inner_join(test1, test2, by = "x")

5.2左连left_join

left_join(test1, test2, by = 'x')
left_join(test2, test1, by = 'x')

5.3全连full_join

full_join( test1, test2, by = 'x')

5.4半连接:返回能够与y表匹配的x表所有记录semi_join

semi_join(x = test1, y = test2, by = 'x')

5.5反连接:返回无法与y表匹配的x表的所记录anti_join

anti_join(x = test2, y = test1, by = 'x')

5.6简单合并

在相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数

test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1
test2 <- data.frame(x = c(5,6), y = c(50,60))
test2
test3 <- data.frame(z = c(100,200,300,400))
test3
bind_rows(test1, test2)
bind_cols(test1, test3)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,928评论 6 509
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,748评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,282评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,065评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,101评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,855评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,521评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,414评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,931评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,053评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,191评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,873评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,529评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,074评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,188评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,491评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,173评论 2 357

推荐阅读更多精彩内容

  • 今天的内容主要是学习R包,包括包的安装、加载等;并且以dplyr包进行了举例,此包中主要包含了可对数据框进行操作的...
    soda0301阅读 285评论 0 0
  • 一、前言 R包是多个函数的集合,具有详细的说明和示例。生信必学R语言——含有丰富图表和Biocductor上的生信...
    小路多虫阅读 195评论 0 0
  • 今天的学习内容是R包安装和dplyr函数的运用 一、安装和加载R包 镜像设置 1.Tools-Options-Pa...
    LBB阅读 391评论 0 0
  • 一、设置镜像 通过file.edit('~/.Rprofile')来编辑R配置文件.Rprofile在.Rprof...
    胡看穿HOO阅读 230评论 0 0
  • 学习R包 (以dqlyr为例) 安装和加载R包 1.镜像设置 初级模式 进行相关配置 但是这个是CRAN的镜像,如...
    松风阅读 215评论 0 0