Eng: Applications of Data Analysis & KDD Process & CRISP-DM Methodology

Database Analysis & Decision Support

    Market analysis & management

        Target marketing, customer relationship management, market basket analysis, cross selling, market segmentation

    Risk analysis and management

        Forecasting, customer retention, improved underwriting, quality control, competitive analysis

    Fraud detection and management 

Other applications

    Text mining and web analysis

    Intelligent query answering


Market Analysis & Management

Data sources?

    credit card transactions, loyalty cards, discount coupons, customer complaint calls, social media, plus (public) lifestyle studies

Target marketing

    find clusters of 'model' customers who share same characteristics: interest, income level, spending habits, etc

Determine customer purchasing patterns over time

    conversion of sign to joint bank account: marriage ... 

Cross-market analysis

    associations / co-relations between product sales

    prediction based on the association information

Customer profiling

    data analytics can tell you what types of customers buy what products (clustering or classification)

Identifying customer requirements

    identify the best products for different customers 

    user prediction to find what factors will attract new customers

Provide summary information

    Various multidimensional summary reports

    Statistical summary information (mean and variance ...)


Corporate Analysis & Risk Management

Finance planning and asset evaluation

    Cash flow analysis and prediction

    Contingent claim analysis to evaluate assets

    Cross-sectional and time series analysis (financial-ratio, trend analysis, ...)

Resource planning

    summarise and compare the resources and spending 

Competition

    Monitor (predict) competitors and market directions

    group customers into classes and a class-based pricing procedure

    set pricing strategy in a highly competitive market


Fraud Detection & Management 

Applications 

    health care, retail, credit card services, telecommunications (phone card fraud) ..

Approach 

    use historical data to build models of fraudulent behaviour and use data mining to help identify similar instances.

Examples

    Auto insurance: detect groups of people who stage accidents to collect on insurance

    Money laundering: detect suspicious money transactions

    Medical insurance: detect professional patients and rings of doctors and rings of references


Other applications

    Sports

        Moneyball

    Astronomy

        JPL and the Palomar Observatory discovered 22 quasars using data analytics


KDD process: knowledge process database 

Iterative process, not waterfall

Learn the application domain (prior knowledge & goals)

Create target data set: data selection

Data cleaning and preprocessing

Data reduction and transformation

    Find useful features, dimensionality/variable reduction, invariant representation

Choose functions of data mining: the 'data mining problem'

    Summarisation, classification, regression, association, clustering

Choose the data mining algorithms

Data mining: find pattern of interest

Pattern evaluation and knowledge presentation

    Visualisation, transformation, remove redundant patterns, ...

Use of discovered knowledge


CRISP-DM methodology: CRoss-Industry Standard Process for Data Mining

:

Business Understanding

    Determine business objectives

    Assess situation

    Determine data mining goals

    Produce project plan

Data Understanding

    Collect initial data

    Describe data

        Data description report 

    Explore data

        What is immediately obvious?

    Verify data quality

        What problems with the data? Sometimes called a data audit

Data Preparation

    Select data

        What pieces of data are needed and why?

    Clean data 

        Deal with the data quality problems found earlier. Maybe 60+% of effort 

    Construct data

        May need to create new instances and / or attributes.

    Integrate data

        May need to combine data from different tables or records into the one table or record

    Format data

        May need to change the format of the data. e.g. dates, remove illegal characters,...

Modelling

    Select the modelling techniques

        Considering the assumptions each technique makes

    Generate test design

        Work out how you're going to test the model quality and validity

    Build the model

        Run the modelling tool on the prepared data t o create a model 

    Assess the model

        Judge the success of the model, based on its accuracy, generality, the test design and the success criteria possibly with assistance from domain experts

Evaluation

    Evaluate results

        Based on the original business objectives (as opposed to accuracy and generality in the modelling phase)

    Review process

        Quality assurance and did the project miss any important factor or task in the business problem?

    Determine next steps

        Do you need to do something else, or can we move to deployment?

Deployment

    Plan deployment

        Develop a strategy for getting the insights (and possibly model) into the business

    Plan monitoring and maintenance

        How do you maintain the deployed model

    Produce final report 

        Describing all the previous steps and possibly a presentation to the customer

    Review project

        Reflect on the entire project. What worked?What didn't ? Hints for future?


Feature Types & their Operations

Data mining methodology

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容

  • 我不想再结婚,也不想生宝宝。 因为…如果那个人不是你,我说服不了我自己。 不管以后你怎么对我,我们会怎样,我都不怪...
    李玉荣_a379阅读 115评论 0 0
  • 装修新房时,每个家庭都会装电热水器,而且电热水器日复一日,年复一年的都在使用。可是,你也许不知道,我们很多家庭热水...
    环保居阅读 389评论 0 0
  • MySQL不同存储引擎可能会有不同。下面的内容以InnoDB为主。 选择数据类型的步骤 确定合适的大类型:数字、字...
    linjinhe阅读 1,681评论 0 3