Hive分析AWS ELB访问日志

保存 AWS ELB 访问日志

AWS ELB - AWS elastic load balancing,为了方便做 auto scaling,可以选用 AWS ELB + AutoScaling。

在 ELB 设置页面可以开启保存访问日志到 S3 bucket中。

Hive 分析ELB日志

Hive可以从S3 bucket中读取日志文件,并使用SQL查询。

注:可以配置 AWS EMR + Hue,方便做后面测试。当然也可以将S3 bucket中的文件同步到本地做测试。

创建Hive table

CREATE EXTERNAL TABLE IF NOT EXISTS elb_raw_access_logs (
  request_timestamp string, 
  elb_name string, 
  request_ip string, 
  request_port int, 
  backend_ip string, 
  backend_port int, 
  request_processing_time double, 
  backend_processing_time double, 
  client_response_time double, 
  elb_response_code string, 
  backend_response_code string, 
  received_bytes bigint, 
  sent_bytes bigint, 
  request_verb string, 
  url string, 
  protocol string, 
  user_agent string, 
  ssl_cipher string, 
  ssl_protocol string ) 
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
         'serialization.format' = '1','input.regex' = '([^ ]*) ([^ ]*) ([^ ]*):([0-9]*) ([^ ]*)[:\-]([0-9]*) ([-.0-9]*) ([-.0-9]*) ([-.0-9]*) (|[-0-9]*) (-|[-0-9]*) ([-0-9]*) ([-0-9]*) \\\"([^ ]*) ([^ ]*) (- |[^ ]*)\\\" (\"[^\"]*\") ([A-Z0-9-]+) ([A-Za-z0-9.-]*)$' ) 
LOCATION 's3://onetouch-test-elb/';

分析

查看数据:

SELECT * FROM elb_raw_access_logs WHERE elb_response_code = '200' LIMIT 10;

日期:2017-04-17T10:11:32.623734Z

各模块正常请求的平均响应时间:

SELECT elb_name, avg(backend_processing_time)
    FROM elb_raw_access_logs
    WHERE elb_response_code == '200'
    GROUP BY elb_name;

Hive partition

CREATE EXTERNAL TABLE IF NOT EXISTS elb_raw_access_logs_part (
  request_timestamp string, 
  elb_name string, 
  request_ip string, 
  request_port int, 
  backend_ip string, 
  backend_port int, 
  request_processing_time double, 
  backend_processing_time double, 
  client_response_time double, 
  elb_response_code string, 
  backend_response_code string, 
  received_bytes bigint, 
  sent_bytes bigint, 
  request_verb string, 
  url string, 
  protocol string, 
  user_agent string, 
  ssl_cipher string, 
  ssl_protocol string ) 
PARTITIONED BY(year string, month string, day string)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
         'serialization.format' = '1','input.regex' = '([^ ]*) ([^ ]*) ([^ ]*):([0-9]*) ([^ ]*)[:\-]([0-9]*) ([-.0-9]*) ([-.0-9]*) ([-.0-9]*) (|[-0-9]*) (-|[-0-9]*) ([-0-9]*) ([-0-9]*) \\\"([^ ]*) ([^ ]*) (- |[^ ]*)\\\" (\"[^\"]*\") ([A-Z0-9-]+) ([A-Za-z0-9.-]*)$' )
LOCATION 's3://onetouch-test-elb/';

alert table

ALTER TABLE elb_raw_access_logs_part ADD PARTITION (year='2017',month='05',day='30') 
    location 's3://onetouch-test-elb/proxy/AWSLogs/677234397898/elasticloadbalancing/us-east-1/2017/05/30/';

show partitions elb_raw_access_logs_part;

分析

2017-05-30 的数据按 elb_response_code 分组:

SELECT elb_response_code, count(url) FROM elb_raw_access_logs_part
    WHERE year = '2017' AND month = '05' AND day = '30'
    GROUP BY elb_response_code;

以天为单位统计模块吞吐量:

select year, month, day, count(*) as total_request_count 
from auth_elb_access_logs_part
group by year, month, day;

以天为单位统计错误率:

select year, month, day, SUM( IF( substr(elb_response_code, 1, 1) != '2', 1 , 0 ) )/ COUNT(*) * 100 as error_rate_pct 
from auth_elb_access_logs_part
group by year, month, day;

以天为单位计算平均响应时间:

select year, month, day, avg(backend_processing_time) as avg_backend_processing_time
from auth_elb_access_logs_part
group by year, month, day;
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容