二叉查找树

二叉查找树是二叉树中最常用的一种类型,也叫二叉搜索树。顾名思义,二叉查找树是为了实现
快速查找而生的。不过,它不仅仅支持快速查找一个数据,还支持快速插入、删除一个数据。

这些都依赖于二叉查找树的特殊结构。二叉查找树要求,在树中的任意一个节点,其左子树中的
每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值。


image.png

1. 二叉查找树的查找操作

我们看如何在二叉查找树中查找一个节点。我们先取根节点,如果它等于我们要查找的数
据,那就返回。如果要查找的数据比根节点的值小,那就在左子树中递归查找;如果要查找的数
据比根节点的值大,那就在右子树中递归查找。


image.png

结合代码

    public class BinarySearchTree {
        private Node tree;
        public Node find(int data) {
            Node p = tree;
            while (p != null) {
                if (data < p.data) p = p.left;
                else if (data > p.data) p = p.right;
                else return p;
            }
            return null;
        }
        public static class Node {
            private int data;
            private Node left;
            private Node right;
            public Node(int data) {
                this.data = data;
            }
        }
    }

2. 二叉查找树的插入操作

二叉查找树的插入过程有点类似查找操作。新插入的数据一般都是在叶子节点上,所以我们只需
要从根节点开始,依次比较要插入的数据和节点的大小关系。
如果要插入的数据比节点的数据大,并且节点的右子树为空,就将新数据直接插到右子节点的位
置;如果不为空,就再递归遍历右子树,查找插入位置。同理,如果要插入的数据比节点数值
小,并且节点的左子树为空,就将新数据插入到左子节点的位置;如果不为空,就再递归遍历左
子树,查找插入位置。


image.png

结合代码

public void insert(int data) {
        if (tree == null) {
            tree = new Node(data);
            return;
        }
        Node p = tree;
        while (p != null) {
            if (data > p.data) {
                if (p.right == null) {
                    p.right = new Node(data);
                    return;
                }
                p = p.right;
            } else { // data < p.data
                if (p.left == null) {
                    p.left = new Node(data);
                    return;
                }
                p = p.left;
            }
        }
    }

3. 二叉查找树的删除操

二叉查找树的查找、插入操作都比较简单易懂,但是它的删除操作就比较复杂了 。针对要删除
节点的子节点个数的不同,我们需要分三种情况来处理。
第一种情况是,如果要删除的节点没有子节点,我们只需要直接将父节点中,指向要删除节点的
指针置为 null。比如图中的删除节点 55。
第二种情况是,如果要删除的节点只有一个子节点(只有左子节点或者右子节点),我们只需要
更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了。比如图中的删
除节点 13。
第三种情况是,如果要删除的节点有两个子节点,这就比较复杂了。我们需要找到这个节点的右
子树中的最小节点,把它替换到要删除的节点上。然后再删除掉这个最小节点,因为最小节点肯
定没有左子节点(如果有左子结点,那就不是最小节点了),所以,我们可以应用上面两条规则
来删除这个最小节点。比如图中的删除节点 18。


image.png

结合代码

    public void delete(int data) {
        Node p = tree; // p 指向要删除的节点,初始化指向根节点
        Node pp = null; // pp 记录的是 p 的父节点
        while (p != null && p.data != data) {
            pp = p;
            if (data > p.data) p = p.right;
            else p = p.left;
        }
        if (p == null) return; // 没有找到
// 要删除的节点有两个子节点
        if (p.left != null && p.right != null) { // 查找右子树中最小节点
            Node minP = p.right;
            Node minPP = p; // minPP 表示 minP 的父节点
            while (minP.left != null) {
                minPP = minP;
                minP = minP.left;
            }
            p.data = minP.data; // 将 minP 的数据替换到 p 中
            p = minP; // 下面就变成了删除 minP 了
            pp = minPP;
        }
// 删除节点是叶子节点或者仅有一个子节点
        Node child; // p 的子节点
        if (p.left != null) child = p.left;
        else if (p.right != null) child = p.right;
        else child = null;
        if (pp == null) tree = child; // 删除的是根节点
        else if (pp.left == p) pp.left = child;
        else pp.right = child;
    }

}

实际上,关于二叉查找树的删除操作,还有个非常简单、取巧的方法,就是单纯将要删除的节点标记为“已删除”,但是并不真正从树中将这个节点去掉。这样原本删除的节点还需要存储在内存中,比较浪费内存空间,但是删除操作就变得简单了很多。而且,这种处理方法也并没有增加插入、查找操作代码实现的难度。

4. 二叉查找树的其他操作

除了插入、删除、查找操作之外,二叉查找树中还可以支持快速地查找最大节点和最小节点、前驱节点和后继节点。
二叉查找树除了支持上面几个操作之外,还有一个重要的特性,就是中序遍历二叉查找树,可以输出有序的数据序列,时间复杂度是 O(n),非常高效。因此,二叉查找树也叫作二叉排序树。

支持重复数据的二叉查找树

前面讲二叉查找树的时候,我们默认树中节点存储的都是数字。很多时候,在实际的软件开发中,我们在二叉查找树中存储的,是一个包含很多字段的对象。我们利用对象的某个字段作为键值(key)来构建二叉查找树。我们把对象中的其他字段叫作卫星数据。
前面我们讲的二叉查找树的操作,针对的都是不存在键值相同的情况。那如果存储的两个对象键值相同,这种情况该怎么处理呢?我这里有两种解决方法。
第一种方法比较容易。二叉查找树中每一个节点不仅会存储一个数据,因此我们通过链表和支持动态扩容的数组等数据结构,把值相同的数据都存储在同一个节点上。
第二种方法比较不好理解,不过更加优雅。
每个节点仍然只存储一个数据。在查找插入位置的过程中,如果碰到一个节点的值,与要插入数据的值相同,我们就将这个要插入的数据放到这个节点的右子树,也就是说,把这个新插入的数据当作大于这个节点的值来处理。


image.png

当要查找数据的时候,遇到值相同的节点,我们并不停止查找操作,而是继续在右子树中查找,
直到遇到叶子节点,才停止。这样就可以把键值等于要查找值的所有节点都找出来。


image.png

对于删除操作,我们也需要先查找到每个要删除的节点,然后再按前面讲的删除操作的方法,依次删除。


image.png

二叉查找树的时间复杂度分析

我们来分析一下,二叉查找树的插入、删除、查找操作的时间复杂度。
实际上,二叉查找树的形态各式各样。比如这个图中,对于同一组数据,我们构造了三种二叉查找树。它们的查找、插入、删除操作的执行效率都是不一样的。图中第一种二叉查找树,根节点的左右子树极度不平衡,已经退化成了链表,所以查找的时间复杂度就变成了 O(n)


image.png

我刚刚其实分析了一种最糟糕的情况,我们现在来分析一个最理想的情况,二叉查找树是一棵完全二叉树(或满二叉树)。这个时候,插入、删除、查找的时间复杂度是多少呢?
从我前面的例子、图,以及还有代码来看,不管操作是插入、删除还是查找,时间复杂度其实都跟树的高度成正比,也就是 O(height)。既然这样,现在问题就转变成另外一个了,也就是,如何求一棵包含 n 个节点的完全二叉树的高度?

树的高度就等于最大层数减一,为了方便计算,我们转换成层来表示。从图中可以看出,包含 n
个节点的完全二叉树中,第一层包含 1 个节点,第二层包含 2 个节点,第三层包含 4 个节点,依次类推,下面一层节点个数是上一层的 2 倍,第 K 层包含的节点个数就是 2^(K-1)。
不过,对于完全二叉树来说,最后一层的节点个数有点儿不遵守上面的规律了。它包含的节点个数在 1 个到 2^(L-1) 个之间(我们假设最大层数是 L)。如果我们把每一层的节点个数加起来就是总的节点个数 n。也就是说,如果节点的个数是 n,那么 n 满足这样一个关系:

n >= 1+2+4+8+...+2^(L-2)+1
n <= 1+2+4+8+...+2^(L-2)+2^(L-1)

借助等比数列的求和公式,我们可以计算出,L 的范围是 [log (n+1), log n +1]。完全二叉树的层数小于等于 log n +1,也就是说,完全二叉树的高度小于等于 log n。
显然,极度不平衡的二叉查找树,它的查找性能肯定不能满足我们的需求。我们需要构建一种不管怎么删除、插入数据,在任何时候,都能保持任意节点左右子树都比较平衡的二叉查找树,这就是我们下一节课要详细讲的,一种特殊的二叉查找树,平衡二叉查找树。平衡二叉查找树的高度接近 logn,所以插入、删除、查找操作的时间复杂度也比较稳定,是 O(logn)。

思考

散列表的插入、删除、查找操作的时间复杂度可以做到常量级的
O(1),非常高效。而二叉查找树在比较平衡的情况下,插入、删除、查找操作时间复杂度才是
O(logn),相对散列表,好像并没有什么优势,那我们为什么还要用二叉查找树呢?
我认为有下面几个原因:
第一,散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在 O(n) 的时间复杂度内,输出有序的数据序列。

第二,散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳
定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在O(logn)。

第三,笼统地来说,尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比 logn 小,所以实际的查找速度可能不一定比 O(logn) 快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。
第四,散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。
最后,为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。
综合这几点,平衡二叉查找树在某些方面还是优于散列表的,所以,这两者的存在并不冲突。我们在实际的开发过程中,需要结合具体的需求来选择使用哪一个。

总结

二叉查找树中,每个节点的值都大于左子树节点的值,小于右子树节点的值。不过,这只是针对没有重复数据的情况。对于存在重复数据的二叉查找树,我介绍了两种构建方法,一种是让每个节点存储多个值相同的数据;另一种是,每个节点中存储一个数据。针对这种情况,我们只需要稍加改造原来的插入、删除、查找操作即可。
在二叉查找树中,查找、插入、删除等很多操作的时间复杂度都跟树的高度成正比。两个极端情况的时间复杂度分别是 O(n) 和 O(logn),分别对应二叉树退化成链表的情况和完全二叉树。
为了避免时间复杂度的退化,针对二叉查找树,我们又设计了一种更加复杂的树,平衡二叉查找树,时间复杂度可以做到稳定的 O(logn)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,222评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,455评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,720评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,568评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,696评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,879评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,028评论 3 409
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,773评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,220评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,550评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,697评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,360评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,002评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,782评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,010评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,433评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,587评论 2 350

推荐阅读更多精彩内容