如何巧用数据分析解决问题

用数据分析解决问题就好比你做数学题,从研读题目到分析题目已知信息,利用已知信息分析题中隐藏条件,最后解题得出答案的过程。

去医院看病,医生会先询问你这个症状出现多长时间了,然后在观察你的身体变化,再结合医学知识,判断出这个症状出现的原因,给出病人建议。这个过程也是解决问题的过程。

这个过程总结出来就是:明确问题——分析原因——提出建议

①明确问题

观察现象把问题定义清楚。需要明确数据来源以及数据的准确性,这里需要注意的是正确定义问题的范围,不要根据自己的主观主义把思考局限在“我觉得”的范围内。

对于业务指标,需要分析指标的含义,以及明确该指标和谁比。定义问题就需要找到理想中的状态和现实中状态的差距。

②分析原因

可以使用我们前面所讲的“多维度拆解分析方法”,对问题进行拆解,将一个个复杂的问题细化为各个子问题。

多维度拆解分析方法可详见多维度拆解方法

针对前面分析的维度进行再次深度分析时,可采用假设检验分析方法,假设某个环节出了问题。

假设检验分析方法可详见:假设检验分析法

探讨哪个因素对结果影响最大,可以使用相关分析方法,来确定影响结果更大的因素。

相关分析方法可详见:相关分析方法

③提出建议

根据第二步找出的原因,提出具体建议,常用的分析方法就是回归分析或AARRR模型分析方法(详见)

回归分析

可以理解为散点图,在散点图上画一条尽可能穿过更多点的一条直线,这条直线叫最佳拟合线。如果这两个因素存在相关关系,就可以使每个点合理的接近这条直线。

这条回归线如果用数学公式表示,就是我们所学的几何课程中的直线方程:Y=ax+b(a:回归系数;b:截距)

回归分析的应用

找到了几者之间的相关关系,就要用回归分析找到相应的回归系数,再根据回归方程找到关键指标,细化到具体部门去执行。

但是提出建议的时候需要注意几点:

①做决策选项不能过多,选项过多会增大决策成本。

②决策是可以落地的具体措施,这样才能把措施变为行动。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容