2018-05-04 第六周

        本周任务:进一步调整模型,优化效果。

        单向lstm神经网络已经不能满足我们的数据模型,由于标准的循环神经网络(RNN)在时序上处理序列,他们往往忽略了未来的上下文信息。一种很显而易见的解决办法是在输入和目标之间添加延迟,进而可以给网络一些时步来加入未来的上下文信息,也就是加入M时间帧的未来信息来一起预测输出。理论上,M可以非常大来捕获所有未来的可用信息,但事实上发现如果M过大,预测结果将会变差。这是因为网路把精力都集中记忆大量的输入信息,而导致将不同输入向量的预测知识联合的建模能力下降。因此,M的大小需要手动来调节。

        所以需要修改模型的架构,采用了最近比较新的模型: 双向长短时记忆网络。首先需要介绍一下,双向循环神经网络(BRNN)的基本思想是提出每一个训练序列向前和向后分别是两个循环神经网络(RNN),而且这两个都连接着一个输出层。这个结构提供给输出层输入序列中每一个点的完整的过去和未来的上下文信息。下图展示的是一个沿着时间展开的双向循环神经网络。六个独特的权值在每一个时步被重复的利用,六个权值分别对应:输入到向前和向后隐含层(w1, w3),隐含层到隐含层自己(w2, w5),向前和向后隐含层到输出层(w4, w6)。值得注意的是:向前和向后隐含层之间没有信息流,这保证了展开图是非循环的。


        而Bi-directional LSTM在上述基础上采用lstm单元,因为长短时记忆网络本身就是在历史记忆中添加一些权重,来保证遗忘的发生,增加了双向,同时,增强对未来上下文的预估。

        实践,修改模型:其余参数不变,只需要修改神经元的定义函数即可:

def BiRNN(x, weights, biases):

    x = tf.transpose(x, [1, 0, 2])

    x = tf.reshape(x, [-1, n_inputs])

    x = tf.split(x, n_steps)

    lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias = 1.0)

    lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias = 1.0)

    outputs, _, _ = tf.contrib.rnn.static_bidirectional_rnn(lstm_fw_cell,

                                                            lstm_bw_cell, x,

                                                            dtype = tf.float32)

    return tf.matmul(outputs[-1], weights['out']) + biases['out']def BiRNN(x, weights, biases):

    x = tf.transpose(x, [1, 0, 2])

    x = tf.reshape(x, [-1, n_inputs])

    x = tf.split(x, n_steps)

    lstm_fw_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias = 1.0)

    lstm_bw_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias = 1.0)

    outputs, _, _ = tf.contrib.rnn.static_bidirectional_rnn(lstm_fw_cell,

                                                            lstm_bw_cell, x,

                                                            dtype = tf.float32)

    return tf.matmul(outputs[-1], weights['out']) + biases['out']

        同样的,需要将批数据转置,因为要符合其矩阵乘的形式,我们可以得知n_steps*n_inputs是向量的长度,我们每次输入仅仅是1/n_steps的数据,而我们需要一整块向量来计算最终的结果,需要用上一次训练好的权重,偏执来计算,然后在这个基础上在进行拟合计算,可以根据lstm的结构看出。

        随后,定义两个基础lstm单元,一个前向,一个后向,两个单元相互独立计算,最后结果在考量两个的取值,即可。

        最后,考量双向lstm的效果


        至此,项目模型已经完成,但依旧有很多可以提升的地方。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354

推荐阅读更多精彩内容